期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

基于GAM模型的唐山市林地植被物候驱动机制的探讨

  • (1.首都师范大学 资源环境与旅游学院,水资源安全北京实验室,北京市城市环境过程与数字模拟国家重点实验室培育基地, 资源环境与地理信息系统北京市重点实验室,北京 100048; 2.保定市自然资源和规划局,保定 071000)
  • DOI: 10.13763/j.cnki.jhebnu.nse.202405025

Discussion on the Driving Mechanism of Forest Land Vegetation Phenology in Tangshan City Based on GAM

摘要/Abstract

摘要:

为加强植被物候响应机理的研究,基于广义相加模型(generalized additive model,GAM)探讨了唐山市林地植被物候驱动机制.以唐山市2001—2020年MOD13Q1 NDVI数据为基础,采用动态阈值法提取了生长季始期(start of growth season,SOG)和生长季结束期(end of growth season,EOG)2个物候参数,基于TS-MK进行了物候的时间变化趋势分析.研究结果表明:1) 唐山西北部和东南部部分地区SOG较早,南部较晚;北部EOG较晚,东南部较早;2001—2020年唐山大部分地区SOG提前(面积占比82.77%),EOG推迟(面积占比78.55%);2) 在SOG的单驱动因素GAM模型中,降水量、最高气温、最低气温、昼夜温差和平均气温对SOG变化的解释率较高(66.8%~95.7%),且调整判定系数较大(0.674~0.957);在EOG的单驱动因素GAM模型中,降水量、最高气温、最低气温、昼夜温差和平均气温对EOG变化的解释率较高(54.3%~65.7%),且调整判定系数较大(0.524~0.649),但整体解释程度仍低于各驱动因子对SOG的解释效果;3) 在SOG和EOG的多驱动因素GAM模型中,相较于其他驱动因素,昼夜温差的重要性最大,分别为F=260.283,F=25.572,昼夜温差每增加0.1 ℃,SOG提前6.27 d,EOG推迟5.84 d;4) 在驱动因素的交互作用对SOG变化影响的GAM模型中,最高气温昼夜温差重要性最大(F=38.55);在驱动因素的交互作用对EOG变化影响的GAM模型中,降水量昼夜温差重要性最大(F=49.015).

Abstract:

In order to strengthen the research of response mechanism of vegetation,this article discussed the driving mechanism of forest land vegetation phendogy in Tangshan city based on general additional model(GAM).Based on MOD13Q1 NDVI data of Tangshan city from 2001 to 2020,the dynamic threshold method was used to extract two phenological parameters,the start of growing season(SOG) and the end of growing season (EOG).Based on TSMK,the analysis of phenology change trend was carried out.The results showed that:1) From 2001 to 2020,SOG in most parts of Tangshan was advanced and EOG was delayed.SOG was earlier in the northwest and southeast parts of Tangshan,and later in the south; EOG was later in the north and earlier in the southeast;2) In the singledriver GAM model of SOG,precipitation,maximum temperature,minimum temperature,day-night temperature difference and dally average temperature had a higher explanation rate (66.8%~95.7%) and a larger adjustment coefficient of determination(0.674~0.957).In the single-driver GAM model of EOG,precipitation,maximum temperature,minimum temperature,day-night temperature difference and dally average temperature had a higher explanation rate (54.3%~65.7%) and a larger adjustment coefficient of determination (0.524~0.649);3) The importance of daynight temperature difference in the multi-driver GAM model of SOG and EOG was the largest,with F=260.283 and F=25.572,respectively.The temperature difference between day and night increased by 0.1 ℃,SOG was 6.27 days in advance,and EOG was delayed for 5.84 days;4) In the GAM model of the interaction of driving factors on SOG changes,maximum temperature-day and night temperature difference was the most important (F=38.55).In the GAM model of the interaction of driving factors on EOG changes,precipitation-day-night temperature difference was the most important (F=49.015).

参考文献 37

  • [1] 翟佳,袁凤辉,吴家兵.植物物候变化研究进展[J].生态学杂志,2015,34(11):3237-3243.doi:10.13292/j.1000-4890.20151023.030 ZHAI Jia,YUAN Fenghui,WU Jiabing.Research Progress on Vegetation Phenological Changes[J].Chinese Journal of Ecology,2015,34(11):3237-3243.
  • [2] 蔡红艳,杨小唤,张树文.植物物候对城市热岛响应的研究进展[J].生态学杂志,2014,33(1):221-228.doi:10.13292/j.1000-4890.20131220.0003 CAI Hongyan,YANG Xiaohuan,ZHANG Shuwen.Research Advances in Plant Phenological Responses to Urban Heat Island[J].Chinese Journal of Ecology,2014,33(1):221-228.
  • [3] 项铭涛,卫炜,吴文斌.植被物候参数遥感提取研究进展评述[J].中国农业信息,2018,30(1):55-66.doi:10.12105/j.issn.1672-0423.20180106 XIANG Mingtao,WEI Wei,WU Wenbin.Review of Vegetation Phenology Estimation by Using Remote Sensing[J].China Agricultural Information,2018,30(1):55-66.
  • [4] CAI Z Z,JÖNSSON P,JIN H X,et al.Performance of Smoothing Methods for Reconstructing NDVI Time-series and Estimating Vegetation Phenology from MODIS Data[J].Remote Sensing,2017,9(12):1271.doi:10.3390/rs9121271
  • [5] DALLIMER M,TANG Z,GASTON K J,et al.The Extent of Shifts in Vegetation Phenology Between Rural and Urban Areas Within a Human-dominated Region[J].Ecology and Evolution,2016,6(7):1942-1953.doi:10.1002/ece3.1990
  • [6] LIU S Y,LIU X N,LIU M L,et al.Extraction of Rice Phenological Differences Under Heavy Metal Stress Using EVI Time-series from HJ-1A/B Data[J].Sensors(Basel,Switzerland),2017,17(6):1243.doi:10.3390/s17061243
  • [7] TAO Z X,DAI J H,WANG H J,et al.Spatiotemporal Changes in the Bud-burst Date of Herbaceous Plants in Inner Mongolia Grassland[J].Journal of Geographical Sciences,2019,29(12):2122-2138.doi:10.1007/s11442-019-1708-9
  • [8] LI X X,FU Y H,CHEN S Z,et al.Increasing Importance of Precipitation in Spring Phenology with Decreasing Latitudes in Subtropical Forest Area in China[J].Agricultural and Forest Meteorology,2021,304/305:108427.doi:10.1016/j.agrformet.2021.108427
  • [9] 乔灿灿,贾铎,程昌秀.祁连山不同类型植被物候变化及其对温度的响应[J].北京师范大学学报(自然科学版),2022,58(1):168-177.doi:10.12202/j.0476-0301.2021321 QIAO Cancan,JIA Duo,CHENG Changxiu.Vegetation Phenology Change and Response to Temperature in the Qilian Mountains from 1982 to 2014[J].Journal of Beijing Normal University(Natural Science),2022,58(1):168-177.
  • [10] 蔡军火,魏绪英,李金峰,等.环境温度对红花石蒜生长节律的调控研究[J].江西农业大学学报,2018,40(1):24-31.doi:10.13836/j.jjau.2018004 CAI Junhuo,WEI Xuying,LI Jinfeng,et al.The Regulation and Control of Ambient Temperature on Growth Rhythm of Lycoris radiata[J].Acta Agriculturae Universitatis Jiangxiensis,2018,40(1):24-31.
  • [11] 陈珂,李星华,管小彬,等.武汉市植被物候变化规律及影响因素分析[J].华中师范大学学报(自然科学版),2019,53(3):433-442.doi:10.19603/j.cnki.1000-1190.2019.03.018 CHEN Ke,LI Xinghua,GUAN Xiaobin,et al.Vegetation Phenology Mapping of Wuhan and Analysis of the Affecting Factors[J].Journal of Central China Normal University(Natural Sciences),2019,53(3):433-442.
  • [12] 杨琪,李书恒,李家豪,等.秦岭森林植被物候及其对气象因子的响应[J].干旱区研究,2021,38(4):1065-1074.doi:10.13866/j.azr.2021.04.18 YANG Qi,LI Shuheng,LI Jiahao,et al.Phenology of Forest Vegetation and Its Response to Climate Change in the Qinling Mountains[J].Arid Zone Research,2021,38(4):1065-1074.
  • [13] LI D J,STUCKY B J,DECK J,et al.The Effect of Urbanization on Plant Phenology Depends on Regional Temperature[J].Nature Ecology & Evolution,2019,3(12):1661-1667.doi:10.1038/s41559-019-1004-1
  • [14] DING H Y,XU L M,ELMORE A J,et al.Vegetation Phenology Influenced by Rapid Urbanization of the Yangtze Delta Region[J].Remote Sensing,2020,12(11):1783.doi:10.3390/rs12111783
  • [15] 孟丹,刘芯蕊,张聪聪.北京市植物物候对热岛效应的响应[J].生态学杂志,2021,40(3):844-854.doi:10.13292/j.1000-4890.202103.029 MENG Dan,LIU Xinrui,ZHANG Congcong.Responses of Plant Phenology to Urban Heat Island Effects in Beijing[J].Chinese Journal of Ecology,2021,40(3):844-854.
  • [16] 卜亚勤.城市化与气候变化共同影响下的植被物候研究[D].南京:南京信息工程大学,2021.doi:10.27248/d.cnki.gnjqc.2021.000778 BU Yaqin.Research on Vegetation Under the Influence of Urbanization and Climate Change[D].Nanjing:Nanjing University of Information Science and Technology,2021.
  • [17] 杨敏慎,刘晓雨,郭辉.气候变暖和CO2浓度升高对农作物的影响[J].江苏农业学报,2021,37(1):246-258.doi:10.3969/j.issn.1000-4440.2021.01.032 YANG Minshen,LIU Xiaoyu,GUO Hui.Effects of Climate Warming and Elevated CO2 Concentration on Crops[J].Jiangsu Journal of Agricultural Sciences,2021,37(1):246-258.
  • [18] 丁海勇,卜亚勤,徐路明.长三角地区植被物候时空变化及其对城市化的响应[J].安全与环境学报,2021,21(3):1352-1360.doi:10.13637/j.issn.1009-6094.2020.0281 DING Haiyong,BU Yaqin,XU Luming.Spatial and Temporal Variation of the Plant Phenology and Its Response to the Urbanization Trend in the Yangtze River Delta[J].Journal of Safety and Environment,2021,21(3):1352-1360.
  • [19] 刘璐,郭梁,王景红,等.中国北方苹果主产地苹果物候期对气候变暖的响应[J].应用生态学报,2020,31(3):845-852.doi:10.13287/j.1001-9332.202003.026 LIU Lu,GUO Liang,WANG Jinghong,et al.Phenological Responses of Apple Tree to Climate Warming in the Main Apple Production Areas in Northern China[J].Chinese Journal of Applied Ecology,2020,31(3):845-852.
  • [20] 李建豪,陶建斌,程波,等.秦岭山区植被春季物候的海拔敏感性[J].应用生态学报,2021,32(6):2089-2097.doi:10.13287/j.1001-9332.202106.016 LI Jianhao,TAO Jianbin,CHENG Bo,et al.Sensitivity of Spring Phenology to Elevation in Qinling Mountains,China[J].Chinese Journal of Applied Ecology,2021,32(6):2089-2097.
  • [21] 胡成媛,康平,吴锴,等.基于GAM模型的四川盆地臭氧时空分布特征及影响因素研究[J].环境科学学报,2019,39(3):809-820.doi:10.13671/j.hjkxxb.2018.0444 HU Chengyuan,KANG Ping,WU Kai,et al.Study of the Spatial and Temporal Distribution of Ozone and Its Influence Factors over Sichuan Basin Based on Generalized Additive Model[J].Acta Scientiae Circumstantiae,2019,39(3):809-820.
  • [22] 曹铭昌,周广胜,翁恩生.广义模型及分类回归树在物种分布模拟中的应用与比较[J].生态学报,2005,25(8):2031-2040.doi:10.3321/j.issn:1000-0933.2005.08.029 CAO Mingchang,ZHOU Guangsheng,WENG Ensheng.Application and Comparison of Generalized Models and Classification and Regression Tree in Simulating Tree Species Distribution[J].Acta Ecologica Sinica,2005,25(8):2031-2040.
  • [23] 王圆圆,郭徵,李贵才,等.基于广义加性模型估算1979—2014年三峡库区降水及其特征分析[J].地理学报,2017,72(7):1207-1220.doi:10.11821/dlxb201707007 WANG Yuanyuan,GUO Zhi,LI Guicai,et al.Precipitation Estimation and Analysis of the Three Gorges Dam Region (1979—2014) by Combining Gauge Measurements and MSWEP with Generalized Additive Model[J].Acta Geographica Sinica,2017,72(7):1207-1220.
  • [24] 王海军,任经纬,张彬,等.利用广义加性模型解析长江中游城市群城镇用地扩展驱动力[J].长江流域资源与环境,2021,30(1):32-43.doi:10.11870/cjlyzyyhj202101004 WANG Haijun,REN Jingwei,ZHANG Bin,et al.Analysis of Driving Forces of Urban Land Expansion in Urban Agglomeration in the Middle Reaches of the Yangtze River Based on General Additive[J].Resources and Environment in the Yangtze Basin,2021,30(1):32-43.
  • [25] WHITE M A,NEMANI R R,THORNTON P E,et al.Satellite Evidence of Phenological Differences Between Urbanized and Rural Areas of the Eastern United States Deciduous Broadleaf Forest[J].Ecosystems,2002,5(3):260-273.doi:10.1007/s10021-001-0070-8
  • [26] 郭力娜,李帅,牛振国,等.基于物候差和多时相影像的耕地种植结构遥感调查:以唐山玉田为例[J].测绘科学,2019,44(10):50-58.doi:10.16251/j.cnki.1009-2307.2019.10.008 GUO Lina,LI Shuai,NIU Zhenguo,et al.Remote Sensing Investigation of Farmland Planting Structure Based on Phenological Difference and Multi-temporal Images-taking Yutian in Tangshan as an Example[J].Science of Surveying and Mapping,2019,44(10):50-58.
  • [27] 安哲.唐山市绿化树种分布状况及适应性研究[J].科技资讯,2013(35):241-242.doi:10.16661/j.cnki.1672-3791.2013.35.113 AN Zhe.Research on the Distribution and Adaptability of Greening Tree Species in Tangshan City[J].Science & Technology Information,2013(35):241-242.
  • [28] 国家统计局城市社会经济调查司.中国城市统计年鉴:2016[M].北京:中国统计出版社,2016. Department of Urban Surveys National Bureau of Statistics of China.China City Statistical Yearbook:2016[M].Beijing:China Statistics Press,2016.
  • [29] LI X C,GONG P,ZHOU Y Y,et al.Mapping Global Urban Boundaries from the Global Artificial Impervious Area(GAIA) Data[J].Environmental Research Letters,2020,15(9):094044.doi:10.1088/1748-9326/ab9be3
  • [30] 夏浩铭,李爱农,赵伟,等.2001—2010年秦岭森林物候时空变化遥感监测[J].地理科学进展,2015,34(10):1297-1305.doi:10.18306/dlkxjz.2015.10.010 XIA Haoming,LI Ainong,ZHAO Wei,et al.Spatiotemporal Variations of Forest Phenology in the Qinling Zone Based on Remote Sensing Monitoring,2001—2010[J].Progress in Geography,2015,34(10):1297-1305.
  • [31] 贺祥,林振山.基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J].环境科学,2017,38(1):22-32.doi:10.13227/j.hjkx.201606061 HE Xiang,LIN Zhenshan.Interactive Effects of the Influencing Factors on the Changes of PM2.5 Concentration Based on GAM Model[J].Environmental Science,2017,38(1):22-32.
  • [32] 杨玉鑫.基于GAM模型对失效数变化的分析[J].计算机科学与应用,2019,9(7):1255-1265.doi:10.12677/CSA.2019.97141 YANG Yuxin.Analysis of Failure Number Change Based on GAM Model[J].Computer Science and Application,2019,9(7):1255-1265.
  • [33] 张莹,张婕,王式功,等.成都市PM2.5浓度变化的影响因素交互作用研究[J].中国环境科学,2021,41(10):4518-4528.doi:10.19674/j.cnki.issn1000-6923.2021.0349 ZHANG Ying,ZHANG Jie,WANG Shigong,et al.Interactive Effects of the Influcening Factors on the Changes of PM2.5 Concentration[J].China Environmental Science,2021,41(10):4518-4528.
  • [34] 贾彬,王彤,王琳娜,等.广义可加模型共曲线性及其在空气污染问题研究中的应用[J].第四军医大学学报,2005,26(3):280-283.doi:10.3321/j.issn:1000-2790.2005.03.028 JIA Bin,WANG Tong,WANG Linna,et al.Concurvity in Generalized Additive Models in Study of Air Pollution[J].Journal of the Fourth Military Medical University,2005,26(3):280-283.
  • [35] 黄小刚,邵天杰,赵景波,等.基于GAM模型的西安市O3浓度影响因素解析[J].环境科学,2020,41(4):1535-1543.doi:10.13227/j.hjkx.201906067 HUANG Xiaogang,SHAO Tianjie,ZHAO Jingbo,et al.Influencing Factors of Ozone Concentration in Xi′an Based on Generalized Additive Models[J].Environmental Science,2020,41(4):1535-1543.
  • [36] 杨金艳,杨万勤,王开运,等.木本植物对CO2浓度和温度升高的相互作用的响应[J].植物生态学报,2003,27(3):304-310. YANG Jinyan,YANG Wanqin,WANG Kaiyun,et al.Woody Plants Respond to Interactions Between Elevated CO2 and Increased Temperature[J].Acta Phytoecologica Sinica,2003,27(3):304-310.
  • [37] 粟凡婕,王加胜,王志敏,等.2001—2020年南盘江流域植被物候时空变化及其对气候的响应[J].水土保持研究,2022,29(5):220-227.doi:10.13869/j.cnki.rswc.20220324.001 SU Fanjie,WANG Jiasheng,WANG Zhimin,et al.Temporal and Spatial Changes of Vegetation Phenology and Its Response to Climate Change in Nanpan River Basin from 2001 to 2020[J].Research of Soil and Water Conservation,2022,29(5):220-227.