期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

基于几类包含关系构造距离半正则图

  • (1.河北科技大学 理学院,石家庄 050018; 2.石家庄财经商贸学校,石家庄 050800; 3.河北师范大学 数学科学学院,石家庄 050024)
  • DOI: 10.13763/j.cnki.jhebnu.nse.202501013

Constructions of Distance-semiregular Graphs from Several Kinds of Containment Relations

摘要/Abstract

摘要:

距离半正则图是距离正则图的一类推广,具有一定的正则性和对称性.具有二分类 PL 的连通二部图称为关于 P 的距离半正则图,如果对于任意一对距离为 i 的顶点 xPyPL,与x 的距离分别为 i-1 和 iy 的邻近点的个数都只跟i 有关系,与顶点xy 的选取无关.分别利用向量空间,辛空间以及横截设计等构型中2类组合对象间的包含关系定义关联关系构造出距离半正则图,给出图的参数,并给出这些距离半正则图是距离双正则图的条件.

Abstract:

Distance-semiregular graphs are a generalization of distance regular graphs,which have certain regularity and symmetry.A connected bipartite graph with bipartition PL is said to be distance-semiregular on P if for each i>0 and any two vertices xP and yPL with distance i,both the number of neighbors of y at distance i-1 from x and the number of neighbors of y at distance i from x do not depend on x or y,but just on i.Several constructions of distance-semiregular graphs are presented in this paper by defining the adjacency relation according to the containment relation between two combinatorial objects from vector space,symplectic space and transversal designs,respectively.This paper gives the parameters of the derived distance-semiregular graphs and the condition for which they are also distance-biregular.

参考文献 15

  • [1] BONDY J A,MURTY U S R.Graph Theory with Applications[M].New York:Elsevier Science Publishing Company,Inc,1976.
  • [2] BROUWER A E,COHEN A M,NEUMAIER A.Distance-regular Graphs[M].Berlin:Springer,1989.
  • [3] SUZUKI H.Distance-semiregular Graphs[J].Algebra Colloquium,1995,2(4):315-328.
  • [4] DELORME C.Distance Biregular Bipartite Graphs[J].European Journal of Combinatorics,1994,15(3):223-238.doi:10.1006/eujc.1994.1024
  • [5] KOOLEN J H,YU K F,LIANG X Y,et al.Non-geometric Distance-regular Graphs of Diameter at Least 3 with Smallest Eigenvalue at Least -3[J].European Journal of Combinatorics,2025,126:104118.doi:10.1016/j.ejc.2024.104118
  • [6] GUNDERSON K,MEAGHER K,MORRIS J,et al.Induced Forests in Some Distance-regular Graphs[J].Discrete Applied Mathematics,2024,346:290-300.doi:10.1016/j.dam.2023.12.003
  • [7] KOOLEN J H,ABDULLAH M,GEBREMICHEL B,et al.Distance-regular Graphs with Exactly One Positive Q-distance Eigenvalue[J].Linear Algebra and Its Applications,2024,689:230-246.doi:10.1016/j.laa.2024.02.030
  • [8] WAN Z X.Design Theory[M].Beijing:Higher Education Press,2009.
  • [9] WAN Z X.Geometry of Classical Groups over Finite Fields[M].2nd Edition,Beijing/New York:Science Press,2002.
  • [10] D′YACHKOV A,HWANG F,MACULA A,et al.A Construction of Pooling Designs with Some Happy Surprises[J].Journal of Computational Biology,2005,12(8):1129-1136.doi:10.1089/cmb.2005.12.1129
  • [11] DAS A.Subspace Inclusion Graph of a Vector Space[J].Communications in Algebra,2016,44(11):4724-4731.doi:10.1080/00927872.2015.1110588
  • [12] WANG X L,WONG D.Automorphism Group of the Subspace Inclusion Graph of a Vector Space[J].Bulletin of the Malaysian Mathematical Sciences Society,2019,42(5):2213-2224.doi:10.1007/s40840-017-0597-2
  • [13] HE J M,ZHANG S M,ZHANG G S.Symplectic Totally Isotropic Subspace Inclusion Graph[J].Linear and Multilinear Algebra,2023,71(16):2585-2598.doi:10.1080/03081087.2022.2112016
  • [14] HE J M,ZHANG G S.Automorphisms of Symplectic Totally Isotropic Subspace Inclusion Graph[J].Journal of Algebra and Its Applications,2024,23(2):2450024.doi:10.1142/s0219498824500245
  • [15] TANG Z M,WAN Z X.Symplectic Graphs and Their Automorphisms[J].European Journal of Combinatorics,2006,27(1):38-50.doi:10.1016/j.ejc.2004.08.002