期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

BiOBr基S型异质结制备及光催化CO2还原研究进展

  • (河北师范大学 化学与材料科学学院,石家庄 050024)
  • DOI: 10.13763/j.cnki.jhebnu.nse.202503013

Research Progress on Preparation of BiOBr-based S-scheme Heterojunction and Photocatalytic CO2 Reduction

摘要/Abstract

摘要:

CO2过度排放所带来的环境污染和能源危机问题对人类社会造成了严重困扰.因此,利用太阳能将CO2催化还原转化为高附加值有机物成为研究热点.目前,BiOBr半导体光催化剂因其具有独特的二维层状结构、合适的能带结构、可调的电子结构和良好的光催化性能而受到广泛关注.BiOBr基S型异质结光催化剂可以提升载流子分离效率、增强氧化还原能力、拓宽光吸收范围,显著增强了光催化性能.结合本课题组的研究工作,综述了几种典型BiOBr基S型异质结的制备方法、CO2还原性能及光催化机理的研究进展,并展望了其研究前景.

Abstract:

The environmental pollution and energy crisis caused by excessive CO2 emission have seriously troubled human society.Therefore,utilizing solar energy to catalyze the reduction of CO2 into high-value-added organic substances has become a research hotspot.Currently,BiOBr semiconductor photocatalyst has been widely concerned due to its unique two-dimensional layered structure,suitable energy band structure,adjustable electronic structure and good photocatalytic performance.The photocatalytic performance of BiOBr-based S-scheme heterojunction photocatalysts can be significantly enhanced as they can improve the carrier separation efficiency,enhance the redox ability and broaden the light absorption range.Based on the research works of our research group,the research progress on the preparation methods,CO2 reduction performance and photocatalytic mechanism of several typical BiOBr-based S-scheme heterojunctions were reviewed,and the research prospects were prospected.

参考文献 35

  • [1] 王丹丹,蔺兆鑫,谷慧杰,等.钼酸铋在光催化技术中的改性与应用[J].化学进展,2023,35(4):606-619.doi:10.7536/PC220934 WANG Dandan,LIN Zhaoxin,GU Huijie,et al.Modification and Application of Bi2MoO6 in Photocatalytic Technology[J].Progress in Chemistry,2023,35(4):606-619.
  • [2] HAN L P,LI B,WEN H,et al.Photocatalytic Degradation of Mixed Pollutants in Aqueous Wastewater Using Mesoporous 2D/2D TiO2(B)-BiOBr Heterojunction[J].Journal of Materials Science & Technology,2021,70:176-184.doi:10.1016/j.jmst.2020.08.036
  • [3] CYBULARCZYK-CECOTKA M,SZCZEPANIK J,GIEDYK M.Photocatalytic Strategies for the Activation of Organic Chlorides[J].Nature Catalysis,2020,3(11):872-886.doi:10.1038/s41929-020-00515-8
  • [4] CUI Y Y,LI M K,ZHU N L,et al.Bi-based Visible Light-driven Nano-photocatalyst:The Design,Synthesis,and Its Application in Pollutant Governance and Energy Development[J].Nano Today,2022,43:101432.doi:10.1016/j.nantod.2022.101432
  • [5] CHEN P,LIU H J,CUI W,et al.Bi-based Photocatalysts for Light-driven Environmental and Energy Applications:Structural Tuning,Reaction Mechanisms,and Challenges[J].EcoMat,2020,2(3):e12047.doi:10.1002/eom2.12047
  • [6] DUTTA V,CHAUHAN A,VERMA R,et al.Recent Trends in Bi-based Nanomaterials:Challenges,Fabrication,Enhancement Techniques,and Environmental Applications[J].Beilstein Journal of Nanotechnology,2022,13:1316-1336.doi:10.3762/bjnano.13.109
  • [7] ZHANG K L,LIU C M,HUANG F Q,et al.Study of the Electronic Structure and Photocatalytic Activity of the BiOCl Photocatalyst[J].Applied Catalysis B:Environmental,2006,68(3/4):125-129.doi:10.1016/j.apcatb.2006.08.002
  • [8] ZHANG X,AI Z H,JIA F L,et al.Generalized One-pot Synthesis,Characterization,and Photocatalytic Activity of Hierarchical BiOX(X=Cl,Br,I) Nanoplate Microspheres[J].Journal of Physical Chemistry C,2008,112(3):747-753.doi:10.1021/jp077471t
  • [9] WANG W D,HUANG F Q,LIN X P,et al.Visible-light-responsive Photocatalysts xBiOBr-(1-x)BiOI[J].Catalysis Communications,2008,9(1):8-12.doi:10.1016/j.catcom.2007.05.014
  • [10] ZHAO G Q,HU J,ZOU J,et al.Modulation of BiOBr-based Photocatalysts for Energy and Environmental Application:A Critical Review[J].Journal of Environmental Chemical Engineering,2022,10(2):107226.doi:10.1016/j.jece.2022.107226
  • [11] ZHANG Y M,YU J T,QI S Y,et al.Understanding the Photocatalytic Mechanisms of the BiOBr/BiOCl Heterostructures:First-principles Study[J].Physica B:Condensed Matter,2023,651:414582.doi:10.1016/j.physb.2022.414582
  • [12] XU L P,YU J C,WANG Y.Recent Advances on Bismuth Oxyhalides for Photocatalytic CO2 Reduction[J].Journal of Environmental Sciences,2024,140:183-203.doi:10.1016/j.jes.2023.07.002
  • [13] LI W X,LI X C,FU X H,et al.Photo-induced Conversion of Type-Ⅱ CoPc/BiOBr-NSs to S-scheme Heterostructure for Boosting CO2 Photoreduction[J].Chemical Engineering Journal,2023,451:138932.doi:10.1016/j.cej.2022.138932
  • [14] ZHANG Q R,GUAN X S,WANG X K,et al.In-situ Electrochemical-ion-exchange Synthesis of S-scheme 1D/2D BiPO4/BiOBr Heterojunction Film from Bi Plate with Highly Efficient Photocatalytic CO2 Reduction Activity[J].Catalysis Communications,2023,177:106664.doi:10.1016/j.catcom.2023.106664
  • [15] ZHU B C,SUN J,ZHAO Y Y,et al.Construction of 2D S-scheme Heterojunction Photocatalyst[J].Advanced Materials,2024,36(8):2310600.doi:10.1002/adma.202310600
  • [16] LI Z H,LAN D Q,LI Z J,et al.Step-doped Disulfide Vacancies and Functional Groups Synergistically Enhance Photocatalytic Activity of S-scheme Cu3SnS4/L-BiOBr Towards Ciprofloxacin Degradation[J].Chemosphere,2022,301:134684.doi:10.1016/j.chemosphere.2022.134684
  • [17] SADDIQUE Z,IMRAN M,JAVAID A,et al.Band Engineering of BiOBr Based Materials for Photocatalytic Wastewater Treatment via Advanced Oxidation Processes(AOPs):A Review[J].Water Resources and Industry,2023,29:100211.doi:10.1016/j.wri.2023.100211
  • [18] SHARMA K,DUTTA V,SHARMA S,et al.Recent Advances in Enhanced Photocatalytic Activity of Bismuth Oxyhalides for Efficient Photocatalysis of Organic Pollutants in Water:A Review[J].Journal of Industrial and Engineering Chemistry,2019,78:1-20.doi:10.1016/j.jiec.2019.06.022
  • [19] WAGEH S,AL-GHAMDI A A,JAFER R,et al.A New Heterojunction in Photocatalysis:S-scheme Heterojunction[J].Chinese Journal of Catalysis,2021,42(5):667-669.doi:10.1016/S1872-2067(20)63705-6
  • [20] XU Q L,ZHANG L Y,CHENG B,et al.S-scheme Heterojunction Photocatalyst[J].Chem,2020,6(7):1543-1559.doi:10.1016/j.chempr.2020.06.010
  • [21] DENG X Y,ZHANG J J,QI K Z,et al.Ultrafast Electron Transfer at the In2O3/Nb2O5 S-scheme Interface for CO2 Photoreduction[J].Nature Communications,2024,15:4807.doi:10.1038/s41467-024-49004-7
  • [22] MENG L Y,QU Y,JING L Q.Recent Advances in BiOBr-based Photocatalysts for Environmental Remediation[J].Chinese Chemical Letters,2021,32(11):3265-3276.doi:10.1016/j.cclet.2021.03.083
  • [23] ZHU Q L,HUANG W X,SHEN J H,et al.In-situ Preparation of BiOBr/Bi-doped CsPbBr3 S-scheme Heterojunction for Efficient Photocatalytic CO2 Reduction[J].Chemical Engineering Journal,2024,499:156663.doi:10.1016/j.cej.2024.156663
  • [24] GUAN X S,ZHANG X C,ZHANG C M,et al.Original Self-assembled S-scheme BiOBr(001)/Bi2SiO5/Bi Heterojunction Photocatalyst with Rich Oxygen Vacancy for Boosting CO2 Reduction Performance[J].Journal of Colloid and Interface Science,2023,644:426-436.doi:10.1016/j.jcis.2023.04.097
  • [25] XIE Y,ZHOU Y P,GAO C M,et al.Construction of AgBr/BiOBr S-scheme Heterojunction Using Ion Exchange Strategy for High-efficiency Reduction of CO2 to CO Under Visible Light[J].Separation and Purification Technology,2022,303:122288.doi:10.1016/j.seppur.2022.122288
  • [26] MIAO Z R,WANG Q L,ZHANG Y F,et al.In Situ Construction of S-scheme AgBr/BiOBr Heterojunction with Surface Oxygen Vacancy for Boosting Photocatalytic CO2 Reduction with H2O[J].Applied Catalysis B:Environmental,2022,301:120802.doi:10.1016/j.apcatb.2021.120802
  • [27] XIE J,HUANG J G,TURGAN D,et al.Acceleration of Photocatalytic CO2 Reduction at Intimate Interface in AgBr/BiOBr Heterojunctions via a Co-anion Strategy[J].Inorganic Chemistry,2023,62(37):15249-15257.doi:10.1021/acs.inorgchem.3c02428
  • [28] JIA X M,HU C,SUN H Y,et al.A Dual Defect Co-modified S-scheme Heterojunction for Boosting Photocatalytic CO2 Reduction Coupled with Tetracycline Oxidation[J].Applied Catalysis B:Environmental,2023,324:122232.doi:10.1016/j.apcatb.2022.122232
  • [29] ZHANG T,MAIHEMLLTI M,OKITSU K,et al.In Situ Self-assembled S-scheme BiOBr/pCN Hybrid with Enhanced Photocatalytic Activity for Organic Pollutant Degradation and CO2 Reduction[J].Applied Surface Science,2021,556:149828.doi:10.1016/j.apsusc.2021.149828
  • [30] TAO W,TANG Q Y,HU J Q,et al.Construction of a Hierarchical BiOBr/C3N4 S-scheme Heterojunction for Selective Photocatalytic CO2 Reduction Towards CO[J].Journal of Materials Chemistry A,2023,11(45):24999-25007.doi:10.1039/d3ta05388a
  • [31] HUANG Y,ZHANG J F,DAI K,et al.Efficient Solar-driven CO2 Reduction on Aminated 2D/2D BiOBr/CdS-diethylenetriamine S-scheme Heterojunction[J].Ceramics International,2022,48(6):8423-8432.doi:10.1016/j.ceramint.2021.12.050
  • [32] XIAO Y X,MAIMAITIZI H,OKITSU K,et al.Sonochemical Fabrication of S-scheme Hierarchical CdS/BiOBr Heterojunction Photocatalyst with High Performance for Carbon Dioxide Reduction[J].Particle & Particle Systems Characterization,2022,39(4):2200019.doi:10.1002/ppsc.202200019
  • [33] WANG H Q,YAN C L,XU M Y,et al.Pd Nanoparticle-modified BiOBr/CdS S-scheme Photocatalyst for Enhanced Conversion of CO2[J].Inorganic Chemistry,2024,63(37):17274-17286.doi:10.1021/acs.inorgchem.4c03112
  • [34] MIAO Z R,ZHANG Y F,WANG N,et al.BiOBr/Bi2S3 Heterojunction with S-scheme Structure and Oxygen Defects:In-situ Construction and Photocatalytic Behavior for Reduction of CO2 with H2O[J].Journal of Colloid and Interface Science,2022,620:407-418.doi:10.1016/j.jcis.2022.04.035
  • [35] LI C,LU X Y,CHEN L Y,et al.WO3/BiOBr S-scheme Heterojunction Photocatalyst for Enhanced Photocatalytic CO2 Reduction[J].Materials,2024,17(13):3199.doi:10.3390/ma17133199