期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

具混合时滞复值 Hopfield神经网络的渐进概周期解

  • (云南大学 数学与统计学院,昆明 650091)
  • DOI: 10.13763/j.cnkij.hebnu.nse.202501007

Asymptotically Almost Periodic Solutions of Complex-valued Hopfield Neural Networks with Mixed Time Delays

摘要/Abstract

摘要:

研究了一类具混合时滞复值Hopfield神经网络的渐进概周期解的存在性.与以往多讨论实值神经网络的成果不同,考虑到实值Hopfield神经网络在问题处理过程中的局限性,提出复值网络是为了处理在实数域上不能直接处理的复值条件,同时当复值条件的虚部为0时,复值系统就可以直接处理实数数值.首先要将复数数据处理分成实部和虚部来讨论,利用Banach空间中的不动点定理、实数集上的指数二分性和若干微分方程不等式技巧,分别对实部和虚部进行验证,最后获得了该类复值神经网络的渐进周期解的存在性和唯一性.

Abstract:

The current research aims to investigate the existence of asymptotically almost periodic solu-tions in a particular class of complex-valued Hopfield neural networks with mixed time delays.Unlike most of the previous research efforts that primarily centered on real-valued neural networks, this paper takes into account the constraints of real-valued Hopfield neuralnetworks in addressing certain problems. It introduces a complex-valued network architecture to tackle complex-valued conditions that are insusceptible to direct processing within the real number domain.Notably, when the imaginary component of a complex-valued condition vanishes,the complex-valued system can seamlessly handle real numerical data. The investigation commences by dissecting the processing of complex data into its real and imaginary components for separate analysis.Employing the fixed-point theorem in Banach space, the exponential dichotomy property defined over the real number set, along with several differential equation inequality methods,the real and imaginary parts are rigorously examined.Ultimately, the research establishes the existence and uniqueness of asymptotically almost periodic solutions for the considered class of complex-valued neural networks.

参考文献 17

  • [1] HOPFIELD JJ.Neural Networks and Physical Systems with Emergent Collective Computational Abilities[J].Proceedings of the National Academy of Sciences of the United States of America,1982,79(8):2554-2558.doi:10.1073/pnas.79.8.2554
  • [2] WEN U P,LAN K M,SHIH H S.A Review of Hopfield Neural Networks for Solving Mathematical Programming Prob- lems[J].European Journal of Operational Research,2009,198(3):675-687.doi:10.1016/j.ejor.2008.11.002
  • [3] HUL H,SUN F C,XU H L,et al.Mutation Hopfield Neural Network and Its Applications[J].Information Sciences, 2011,181(1):92-105.doi:10.1016/j.ins.2010.08.007
  • [4] YU Z Q, ABDULGHANI A M, ZAHID A,et al An Overview of Neuromorphic Computing for ArtificialIntelligence Enabled Hardware-based Hopfield Neural Network[J].IEEE Access,2020,8:67085-67099.doi:10.1109/ACCESS.2020.2985839
  • [5] ARBI A,AOUITIC,CHÉRIF F,et al.Slability Analysis for Delayed High-order Type of Hopfield Neural Networks with Impulses[J].Neurocomputing,2015,165:312-329.doi:10.1016/j.neucom.2015.03.021
  • [6] DONG T,GONG X M, HUANG T W.Zero-hopf Bifurcation of a Memristive Synaptic Hopfied Neural Network with Time Delay[J].Neural Networks,2022,149:146-156.doi:10.1016/j.neunet.2022.02.009
  • [7] 赵忠颖,周立群.一类具变时滞脉冲Hopfield神经网络周期解的存在性和一致稳定性[J].黑龙江大学自然科学学报, 2016,33(2):156-161.doi:10.13482/j.issn1001-7011.2015.07.245 ZHAO Zhongying,ZHOU Liqun. Existence and Uniform Stability of Periodic Solutions for a Class of Impulsive Hopfield Neural Networks with Time-varying Delays[J].Journal of Natural Science of Heilongjiang University,2016,33(2):156-161.
  • [8] 杨继昌,姚晓洁,沈柳平.具有混合时滞的中立型 Hopfield神经网络的概周期解[J].数学的实践与认识,2017,47 (6):194-208. YANG Jichang,YAO Xiaojie,SHEN Liuping.Almost Periodic Solution for Neutral-type Hopfield Neural Networks with Mixed Delays[J].Mathematics in Practice and Theory,2017,47(6):194-208.
  • [9] 孟益民,黄立宏,郭上江.具分布时滞双向联想记忆神经网络周期解的存在性及全局稳定性[J].应用数学学报,2018,41 (3):369-387.doi:10.3969/j.issn.1005-3085.2023.02.005 MENG Yimin,HUANG Lihong,GUO Shangjiang.Global Existence and Stability of Periodic Solutions of BAM Neural Networks with Distributed Delays[J].Acta Mathematicae Applicatae Sinica,2018,41(3):369-387.
  • [10] NITTA T.Solving the XOR Problem and the Detection of Symmetry Using a Single Complex-valued Neuron[J].Neural Networks,2003,16(8):1101-1105.doi:10.1016/S0893-6080(03)00168-0
  • [11] 冯靓,胡成,于娟.脉冲耦合复值神经网络的全局渐近同步[J].西南师范大学学报(自然科学版),2022,47(3):9-15.doi: 10.13718/j.cnki.xsxb.2022.03.002 FENG Liang,HU Cheng,YU Juan.On Global Asymptotic Synchronization of Impulsively Coupled Neural Networks with Complex Values[J].Journal of Southwest China Normal University(Natural Science Edition),2022,47(3):9-15.
  • [12] 陈宇,周博,宋乾坤.具有不确定性的分数阶时滞复值神经网络无源性[J].应用数学和力学,2021,42(5):492-499.doi: 10.21656/1000-0887.410309 CHEN Yu,ZHOU Bo,SONG Qiankun. Passivity of Fractional-order Delayed Complex-valued Neural Networks with Uncertainties[J]. Applied Mathematics and Mechanics,2021,42(5):492-499.
  • [13] 刘苑醒,张玮玮,张红梅.分数阶复值时滞神经网络的准一致同步[J].安庆师范大学学报(自然科学版),2020,26(3): 6-15.doi:10.13757/j.cnki.cn34-1328/n.2020.03.002 LIU Yuanxing,ZHANG Weiwei,ZHANG Hongmei.Quasi-uniform Synchronization of Fractional-order Complex-valued Neural Networks with Time Delay[J].Journal of Anqing Normal University(Natural Science Edition),2020,26(3):6-15.
  • [14] 黄汝佳,江南,刘小洋,等.切换拓扑下耦合复值神经网络的二分同步[J].江苏师范大学学报(自然科学版),2023,41(2): 51-58.doi:10.3969/j.issn.2095-4298.2023.02.011 HUANG Rujia,JIANG Nan,LIU Xiaoyang,et al.Bipartite Synchronization of Coupled Complex-valued Neural Networks with Switching Topologies[J].Journal of Jiangsu Normal University(Natural Science Edition),2023,41(2):51-58.
  • [15] 张吉萍,杨志春.具有比例时滞的高阶中立型CNNs的概周期解与稳定性[J].重庆师范大学学报(自然科学版),2022,39 (4):80-86.doi:10.11721/cqnuj20220414 ZHANG Jiping,YANG Zhichun.Almost Periodic Solutions and Stability of High Order Neutral CNNs with Proportional Delays[J].Journal of Chongqing Normal University(Natural Science),2022,39(4):80-86.
  • [16] 任琛琛,杨苏丹.带有渐近概周期系数的次线性热方程解的存在唯一性[J].数学物理学报,2025,45(1):31-43. REN Chenchen,YANG Sudan.Existence and Uniqueness of Solutions for Sub-linear Heat Equations with Almost Periodic Coefficients[J].Acta Mathematica Scientia,2025,45(1):31-43.
  • [17] 何崇佑.概周期微分方程[M].北京:高等教育出版社,1992. HE Chongyou.Almost Periodic Differential Equations[M].Beijing:Higher Education Press,1992.