期刊信息

- 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
- 主办: 河北师范大学
- ISSN: 1000-5854
- CN: 13-1061/N
- 中国科技核心期刊
- 中国期刊方阵入选期刊
- 中国高校优秀科技期刊
- 华北优秀期刊
- 河北省优秀科技期刊
Dynamics and Synchronization of a Fractional-order Complex Unified System
摘要/Abstract
提出了一个带有复状态变量的分数阶统一系统,探讨了系统的动力学行为和同步问题.研究了系统在分数阶阶数相等和不等2种情况下的基本动力学特性,包括不同参数值下的吸引子图、随参数或阶数变化的分岔图.通过分析可得,该系统在参数变化时发生了典型的周期倍分岔和切分岔,所得结果表明该系统具有丰富的动力学行为.同时发现,随着阶数的增大,系统出现混沌的参数阈值变小.基于对该系统动力学的研究,通过设计合适的同步规则和控制器,实现了系统的投影同步;并通过数值模拟验证了所设计的同步规则和控制器的有效性.
A fractional-order unified system with complex variables is proposed and studied.Firstly,the dynamical characteristic of the system in the commensurate-order and incommensurate-order cases,including attractors with different values of system parameter and bifurcations diagrams with respect to a parameter or an order,is analyzed.Typical period-doubling and tangent bifurcations are observed.Besides,the critical value of the parameter that chaos appears in the system decreases as the order increases.Furthermore,the synchronization scheme for the fractional-order system is investigated on the basis of the stability theory of fractional-order systems.The synchronization controllers are designed for the system.Simulation results show that the presented scheme and designed controllers are effective.
关键词
参考文献 18
- [1] GORENFLO R,VESSELLA S.Abel Integral Equations:Analysis and Applications[M].Berlin:Springer-Verlag,1991.
- [2] KIRYAKOVA V.Generalized Fractional Calculus and Applications[M].Harlow:Longman,1994.
- [3] MCBRIDE A C.Fractional Calculus and Integral Transforms of Generalized Functions[M].San Francisco:Pitman Press,1979.
- [4] NISHIMOTO K.An Essence of Nishimoto′s Fractional Calculus[M].Koriyama:Descartes Press,1991.
- [5] KUBIN B.Fractional Integrals and Potentials[M].Harlow:Longman,1996.
- [6] MACHADO J T,GALHANO A M.A Fractional Calculus Perspective of Distributed Propeller Design[J].Commun Nonlinear Sci Numer Simulat,2017,55:174-182.doi:10.1016/j.cnsns.2017.07.009
- [7] LYUBOMUDROV O,EDELMAN M,ZASLAVSKY G M.Pseudochaotic Systems and Their Fractional Kinetics[J].Int J Mod Phys B,2003,17:4149-4167.doi:10.1142/s0217979203022118
- [8] PODLUBNY I.Fractional Differential Equations[M].New York:Academic Press,1999.
- [9] SHEN Y J,LI H,YANG S P,et al.Primary and Subharmonic Simultaneous Resonance of Fractional-order Duffing Oscillator [J].Nonlinear Dynamics,2020,102(3):1485-1497.doi:10.1007/s11071-020-06048-w
- [10] HARTLEY T T,LORENZO C F,QAMMER H K.Chaos in a Fractional Order Chua's System[J].IEEE Transactions on Circuits and Systems,1995,42(8):485-490.
- [11] WANG Y J,WEI Z Q,FENG G L.Attractor Radius for Fractional Lorenz Systems and Their Application to the Quantification of Predictability Limits[J].Chaos,2023,33:013105.doi:10.1063/5.0113709
- [12] AZIL S,ODIBAT Z,SHAWAGFEH N.Nonlinear Dynamics and Chaos in Caputo-like Discrete Fractional Chen System[J].Physica Scripta,2021,96(9):095219.doi:10.1088/1402-4896/ac0987
- [13] DENG W H,LI C P.Chaos Synchronization of the Fractional L System[J].Physica A,2005,353:61-72.doi:10.1016/j.physa.2005.01.021
- [14] ZHUO R,LI Y.Regularity and Existence of Positive Solutions for a Fractional System[J].Communications on Pure and Applied Analysis,2022,21(1):83-100.doi:10.3934/cpaa.2021168
- [15] WEI Y H,ZHAO X,WEI Y D,et al.Lyapunov Stability Analysis for Incommensurate Nabla Fractional Order Systems[J].Journal of Systems Science & Complexity,2023,36(2):555-576.doi:10.1007/s11424-023-1150-z
- [16] WU X J,JIE L,CHEN G R.Chaos in the Fractional Order Unified System and Its Synchronization[J].Journal of the Franklin Institute,2008,345(4):392-401.doi:10.1016/j.jfranklin.2007.11.003
- [17] 张成芬,高今峰,徐磊.分数阶Liu系统与分数阶统一系统中的混沌现象及二者的异结构同步[J].物理学报,2007,56(9):5124-5130.doi:10.7498/aps.56.5124 ZHANG Chengfen,GAO Jinfeng,XU Lei.Chaos in Fractional-order Liu System and a Fractional-order Unified System and the Synchronization Between Them[J].Acta Phys Sin,2007,56(9):5124-5130.
- [18] MATIGNON D.Stability Results for Fractional Differential Equations with Applications to Control Processing[J].Lille,1996(1):963-968.