期刊信息

- 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
- 主办: 河北师范大学
- ISSN: 1000-5854
- CN: 13-1061/N
- 中国科技核心期刊
- 中国期刊方阵入选期刊
- 中国高校优秀科技期刊
- 华北优秀期刊
- 河北省优秀科技期刊
甲基脲-氨基磺酸电解液抑制质子电池的析氢反应及其电化学性能
- (东北大学秦皇岛分校 资源与材料学院,河北省电介质和电解质重点实验室,秦皇岛 066044)
-
DOI:
10.13763/j.cnki.jhebnu.nse.202502004
Study on the Suppression of Hydrogen Evolution Reaction of Proton Battery Using Methyl Urea-aminobenzene Sulfonic Acid Electrolyte
摘要/Abstract
可充电水系质子电池正日益成为下一代储能系统的重要候选者,其具备快速的质子扩散动力学和广泛的质子可用性.然而,析氢反应限制了其性能,导致容量衰减和电极腐蚀,进而缩短电池寿命.为此,探讨通过优化电解质以抑制析氢反应.基于甲基脲(MU)分子结构的非对称性,MU优先与氨基磺酸(SA)和水分子形成独特的溶剂化结构,并与水分子形成氢键网络,减少自由水分子的存在.将这种SA-MU-H2O电解质应用于石墨∥MoO3电池体系中,对其结构、析氢抑制效果及电化学性能的研究表明,电解质的析氢电位由-1.09 V降低至-1.21 V,离子电导率达到29 mS/cm,凝固点从-3.63 ℃降至-32.10 ℃.经过500次充放电循环,使用SA-MU-H2O电解质的电池容量保持率由原来的32%提高至83%,库仑效率为97%.这为水系电池在抑制析氢及提升其他性能方面提供了参考价值.
Rechargeable water-based proton battery is recognized as important candidate for the next-generation energy storage system due to its rapid proton diffusion dynamics and extensive proton availability.However,the hydrogen evolution reaction(HER) results in capacity degradation and electrode corrosion,ultimately shortening battery life.This study explores the optimization of the electrolyte to suppress the HER.Due to the asymmetrical molecular structure of methyl urea MU,it preferentially forms unique solution structures with aminobenzene sulfonic acid SA and water molecules,creating a hydrogen bond network that reduces the presence of free water molecules.The SA-MU-H2O electrolyte is applied in a graphite∥MoO3 battery system to investigate its structure,HER suppression effects, and electrochemical performance.The results demonstrate that the HER potential of the electrolyte decreases from -1.09 V to -1.21 V,with an ionic conductivity of 29 mS/cm and a freezing point lowered from -3.63 ℃ to -32.10 ℃.After 500 charge-discharge cycles,the capacity retention of the battery using the SA-MU-H2O electrolyte increases from 32% to 83%,with a coulombic efficiency of 97%.This provides valuable insights for suppressing HER and enhancing the performance of water-based battery.
关键词
参考文献 50
- [1] WU S,GUO H,ZHAO C.Challenges and Opportunities for Proton Batteries:From Electrodes,Electrolytes to Full-cell Applications[J].Advanced Functional Materials,2024,235(19):2405401.doi:10.1002/adfm.202405401
- [2] GUO X,HE H,ZHAO S,et al.Unveiling Aqueous Lithium-ion Batteries via Advanced Modelling and Characterizations:A review[J].Energy Storage Materials,2024,70:103505.doi:10.1016/j.ensm.2024.103505
- [3] TANG Y,LIU C,ZHU H,et al.Ion-confinement Effect Enabled by Gel Electrolyte for Highly Reversible Dendrite-free Zinc Metal Anode[J].Energy Storage Materials,2020,27:109-116.doi:10.1016/j.ensm.2020.01.023
- [4] ZAKHARCHENKO T K,NAZAROV M A,GOLUBEV M V,et al.On the Role of Electrolyte in Aprotic Mg-O2 Battery Performance[J].Electrochimica Acta,2023,463:142816.doi:10.1016/j.electacta.2023.142816
- [5] EMANUELSSON R,STERBY M,STRMME M,et al.An All-organic Proton Battery[J].Journal of the American Chemical Society,2017,139(13):4828-4834.doi:10.1021/jacs.7b00159
- [6] GUO H,ZHAO C.An Emerging Chemistry Revives Proton Batteries[J].Small Methods,2024,8(6):2300699.doi:10.1002/smtd.202300699
- [7] SCATENA L F,BROWN M G,RICHMOND G L.Water at Hydrophobic Surfaces:Weak Hydrogen Bonding and Strong Orientation Effects[J].Science,2001,292(5518):908-912.doi:10.1126/science.1059514
- [8] SU Z,CHEN J,REN W,et al."Water-in-sugar" Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage[J].Small,2021,17(40):2102375.doi:10.1002/smll.202102375
- [9] CHAUDHARY M,KUMAR S,MALLICK L,et al.Facile Proton Relay in the Triazole Framework to Promote the Electrocatalytic Hydrogen Evolution Reaction[J].Acs Appl Polym Mater,2023,5(7):5609-5619.doi:10.1021/acsapm.3c01392
- [10] HE M,CHEN J,HU A,et al.Manipulating Cation-water Chemistry to Inhibit Hydrogen Evolution of Zinc Metal Anodes[J].Energy Storage Materials,2023,62:102941.doi:10.1016/j.ensm.2023.102941
- [11] ROY K,RANA A,GHOSH T K,et al.How Solvation Energetics Dampen the Hydrogen Evolution Reaction to Maximize Zinc Anode Stability[J].Adv Energy Mater,2024,14(15):2303998.doi:10.1002/aenm.202303998
- [12] WANG Y,HUANG H,XIE D,et al.Sulfolane as an Additive to Regulate Zn Anode in Aqueous Zn-ion Batteries[J].Journal of Alloys and Compounds,2023,966:171655.doi:10.1016/j.jallcom.2023.171655
- [13] LI T.Engineering Hydrophobic Protective Layers on Zinc Anodes for Enhanced Performance in Aqueous Zinc-ion Batteries[J].Journal of Energy Chemistry,2024,97:1-11.doi:10.1016/j.jechem.2024.05.035
- [14] LIANG P,DI S,ZHU Y,et al.Realization of Long-life Proton Battery by Layer Intercalatable Electrolyte[J].Angewandte Chemie,2024,63(38):09871.doi:10.1002/ange.202409871
- [15] YU X,CHEN M,LI Z,et al.Unlocking Dynamic Solvation Chemistry and Hydrogen Evolution Mechanism in Aqueous Zinc Batteries[J].Journal of the American Chemical Society,2024,146(25):17103-17113.doi:10.1021/jacs.4c02558
- [16] SUN J,LIU Z,LI K,et al.Proton-trapping Agent for Mitigating Hydrogen Evolution Corrosion of Zn for an Electrolytic MnO2/Zn Battery[J].ACS Applied Materials & Interfaces,2022,14(46):51900-51909.doi:10.1021/acsami.2c14370
- [17] ZHANG L,CHEN Y.Electrolyte Solvation Structure as a Stabilization Mechanism for Electrodes[J].Energy Materials,2022,162(13):100004.doi:10.20517/energymater.2021.04
- [18] LIU D,ZHANG Y,LIU S,et al.Regulating the Electrolyte Solvation Structure Enables Ultralong Lifespan Vanadium-based Cathodes with Excellent Low-temperature Performance[J].Advanced Functional Materials,2022,32(24):2111714.doi:10.1002/adfm.202111714
- [19] ZHAO Z,ZHANG Z,XU T,et al.Solvation Structure Regulation for Highly Reversible Aqueous Al Metal Batteries[J].Journal of the American Chemical Society,2024,146(3):2257-2266.doi:10.1021/jacs.3c13003
- [20] SU Z,CHEN J,STANSBY J,et al.Hydrogen-bond Disrupting Electrolytes for Fast and Stable Proton Batteries[J].Small,2022,18(22):2201449.doi:10.1002/smll.202201449
- [21] MALKHANDI S,YANG B,MANOHAR A K,et al.Self-assembled Monolayers of n-alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes[J].Journal of the American Chemical Society,2013,135(1):347-353.doi:10.1021/ja3095119
- [22] HENGGE E.Nanoporous Gold Electrodes Modified with Self-assembled Monolayers for Electrochemical Control of the Surface Charge[J].Phys Chem Chem Phys,2021,23(26):14457-14464.doi:10.1039/D1CP01491A
- [23] ZABOROWSKA-MAZURKIEWICZ M,TORABI M,BILEWICZ R.Gold Electrode Modified with Proteoliposome-derived Bilayer for Electrochemical Studies of HMG-CoA Reductase and Its Inhibition[J].Electrochimica Acta,2024,477:143788.doi:10.1016/j.electacta.2024.143788
- [24] HU J.Pb3(OH)2(CO3)2-acetylene Black Composites for Enhanced Hydrogen Evolution Reaction Inhibition of Lead-acid Batteries[J].Journal of the Electrochemical Society,2022,169(6):060538.doi:10.1149/1945-7111/ac797c
- [25] CHEN J,SHI Y,ZHENG S,et al.Blocking Interfacial Proton Transport via Self-assembled Monolayer for Hydrogen Evolution-free Zinc Batteries[J].Angewandte Chemie-International Edition,2024,63(26):e202404825.doi:10.1002/anie.202404825
- [26] MANDAL D,SHAIK S.Interplay of Tunneling,Two-state Reactivity,and Bell-evans-polanyi Effects in C-H Activation by Nonheme Fe(IV)O Oxidants[J].Journal of the American Chemical Society,2016,138(7):2094-2097.doi:10.1021/jacs.5b12077
- [27] ZHAI W,MA Y,CHEN D,et al.Recent Progress on the Long-term Stability of Hydrogen Evolution Reaction Electrocatalysts[J].InfoMat,2022,4(9):e12357.doi:10.1002/inf2.12357
- [28] MIYAKE K,TAKEMURA T,GABE A,et al.Fabrication of Co/P25 Coated with Thin Nitrogen-doped Carbon Shells (Co/P25/NC) as an Efficient Electrocatalyst for Oxygen Reduction Reaction (ORR)[J].Electrochimica Acta,2019,296:867-873.doi:10.1016/j.electacta.2018.11.080
- [29] XU X,SU H,ZHANG J,et al.Sulfamate-derived Solid Electrolyte Interphase for Reversible Aqueous Zinc Battery[J].ACS Energy Letters,2022,7(12):4459-4468.doi:10.1021/acsenergylett.2c02236
- [30] YANG W,ZHANG X,HU X,et al.Inhibition of Hydrogen Evolution in Proton Battery by Sulfamic Acid-caprolactam Electrolyte and Its Electrochemical Study[J].Electrochimica Acta,2024,478:143817.doi:10.1016/j.electacta.2024.143817
- [31] LI Q,JIANG J,LI G,et al.The Electrochemical Stability of Ionic Liquids and Deep Eutectic Solvents[J].Science China Chemistry,2016,59(5):571-577.doi:10.1007/s11426-016-5566-3
- [32] WU X,HONG J J,SHIN W,et al.Diffusion-free Grotthuss Topochemistry for High-rate and Long-life Proton Batteries[J].Nature Energy,2019,4(2):123-130.doi:10.1038/s41560-018-0309-7
- [33] WU S,CHEN J,SU Z,et al.Molecular Crowding Electrolytes for Stable Proton Batteries[J].Small,2022,18(45):2202992.doi:10.1002/smll.202202992
- [34] XIE J,LIANG Z,LU Y C.Molecular Crowding Electrolytes for High-voltage Aqueous Batteries[J].Nature Materials,2020,19(9):1006-1011.doi:10.1038/s41563-020-0667-y
- [35] CIURDUC D E,CRUZ C D L,PATIL N,et al.Molecular Crowding Bi-salt Electrolyte for Aqueous Zinc Hybrid Batteries[J].Energy Storage Materials,2022,53:532-543.doi:10.1016/j.ensm.2022.09.036
- [36] LI Z,LIAO Y,WANG Y,et al.A Co-solvent in Aqueous Electrolyte Towards Ultralong-life Rechargeable Zinc-ion Batteries[J].Energy Storage Materials,2023,56:174-182.doi:10.1016/j.ensm.2023.01.020
- [37] DENG Y,WANG H,FAN M,et al.Nanomicellar Electrolyte to Control Release Ions and Reconstruct Hydrogen Bonding Network for Ultras Table High-energy-density Zn-Mn Battery[J].Journal of the American Chemical Society,2023,145(36):20109-20120.doi:10.1021/jacs.3c07764
- [38] LIN R,KE C,CHEN J,et al.Asymmetric Donor-acceptor Molecule-regulated Core-shell-solvation Electrolyte for High-voltage Aqueous Batteries[J].Joule,2022,6(2):399-417.doi:10.1016/j.joule.2022.01.002
- [39] MA Z,CHEN J,VATAMANU J,et al.Expanding the Low-temperature and High-voltage Limits of Aqueous Lithium-ion Battery[J].Energy Storage Materials,2022,45:903-910.doi:10.1016/j.ensm.2021.12.045
- [40] CHOE C,LADEMANN J,DARVIN M E.Depth Profiles of Hydrogen Bound Water Molecule Types and their Relation to Lipid and Protein Interaction in the Human Stratum Corneum in Vivo[J].Analyst,2016,141(22):6329-6337.doi:10.1039/C6AN01717G
- [41] YANG J,ZHANG Y,LI Z,et al.Three Birds with One Stone:Tetramethyl Urea as Electrolyte Additive for Highly Reversible Zn-metal Anode[J].Advanced Functional Meterials,2022,32(49):2209642.doi:10.1002/adfm.202209642
- [42] SUO L,BORODIN O,GAO T,et al."Water-in-salt" Electrolyte Enables High-voltage Aqueous Lithium-ion Chemistries[J].Science,2015,350(6263):938-943.doi:10.1126/science.aab1595
- [43] CRUPI V,JANNELLI M P,MAGAZUS,et al.Raman Spectroscopic Study of Water in the Poly(Ethylene Glycol) Hydration Shell[J].Journal of Molecular Structure,1996,381(1):207-212.doi:10.1016/0022-2860(96)09308-8
- [44] ZHANG Q,MA Y,LU Y,et al.Modulating Electrolyte Structure for Ultralow Temperature Aqueous Zinc Batteries[J].Nature Communications,2020,11(1):4463.doi:10.1038/s41467-020-18284-0
- [45] 邵苗苗.基于高浓度电解液的水系锂离子电池研究[D].合肥:武汉大学,2022.doi:10.27379/d.cnki.gwhdu.2019.001162 SHAO Miaomiao.Research on Aqueous Lithium-ion Batteries Based on High Concentration Electrolytes[D].Hefei:Wuhan University,2022.
- [46] WANG C,ZHAO S,SONG X,et al.Suppressed Dissolution and Enhanced Desolation in Core-shell MoO3@TiO2 Nanorods as a High-rate and Long-life Anode Material for Proton Batteries[J].Advanced Energy Materials,2022,12(19):2200157.doi:10.1002/aenm.202200157
- [47] WANG X,XIE Y,TANG K,et al.Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-ion Storage[J].Angewandte Chemie-International Edition,2018,57(36):11569-11573.doi:10.1002/anie.201803664
- [48] GAVRIEL B,BERGMAN G,TURGEMAN M,et al.Aqueous Proton Batteries Based on Acetic Acid Solutions:Mechanistic Insights[J].Materials Today Energy,2023,31:101189.doi:10.1016/j.mtener.2022.101189
- [49] LIU H,CAI X,ZHI X,et al.An Amorphous Anode for Proton Battery[J].Nano-Micro Letters,2022,15(1):24.doi:10.1007/s40820-022-00987-2
- [50] CAO L,LI D,DENG T,et al.Hydrophobic Organic-electrolyte-protected Zinc Anodes for Aqueous Zinc Batteries[J].Angewandte Chemie-International Edition,2020,59(43):19292-19296.doi:10.1002/anie.202008634