期刊信息

- 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
- 主办: 河北师范大学
- ISSN: 1000-5854
- CN: 13-1061/N
- 中国科技核心期刊
- 中国期刊方阵入选期刊
- 中国高校优秀科技期刊
- 华北优秀期刊
- 河北省优秀科技期刊
Application of Deep Neural Networks in Infrared Image Recognition
摘要/Abstract
针对复合材料制造与使用过程中常出现的脱粘、分层等缺陷对结构安全的影响,提出一种基于深度神经网络的红外图像智能检测系统.该系统利用红外成像的高速、大面积检测优势,并构建类VOC数据集,实现对缺陷的自动判别、定位和分类.通过对比VGG,GooLeNet,ResNet及DenseNet等网络结构,最终选用ResNet嵌入Faster R-CNN框架,并采用多任务损失函数优化检测性能.实验结果表明,该方法显著提升了检测准确率与效率,为复合材料无损检测提供了高效、智能的新途径.
This paper proposes an intelligent infrared image detection system based on deep neural networks to address the impact of common defects such as debonding and delamination on structural safety during the manufacturing and usage of composite materials.Leveraging the advantages of infrared imaging for high-speed and large-area inspection,the system constructs a VOC-like dataset to achieve automatic defect discrimination,localization,and classification.By comparing network architectures such as VGG,GoogLeNet,ResNet,and DenseNet,ResNet is ultimately selected and integrated into the Faster R-CNN framework,with a multi-task loss function employed to optimize detection performance.Experimental results demonstrate that the proposed method significantly improves detection accuracy and efficiency,providing a highly effective and intelligent new approach for non-destructive testing of composite materials.
关键词
参考文献 17
- [1] 姜艺玺,宋志杰,杜婷婷,等.无损检测技术在复合材料检测中的价值[J].信息记录材料,2019,20(6):55-56.doi:10.16009/j.cnki.cn13-1295/tq.2019.06.027 JIANG Yixi,SONG Zhijie,DU Tingting,et al.The Value of Nondestructive Testing Technology in the Detection of Composite Materials[J].Information Recording Materials,2019,20(6):55-56.
- [2] 徐丽,张幸红,韩杰才.航空航天复合材料无损检测研究现状[J].材料导报,2005,19(8):79-82. XU Li,ZHANG Xinghong,HAN Jiecai.Review of NDE of Composite Materials in Aerospace Field[J].Materials Reports,2005,19(8):79-82.
- [3] 李超人.基于机器学习的图像检测分析[J].科学技术创新,2019(16):90-91. LI Chaoren.Image Detection and Analysis Based on Machine Learning[J].Science and Technology Innovation,2019(16):90-91.
- [4] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149.doi:10.1109/TPAMI.2016.2577031
- [5] 张荣,李伟平,莫同.深度学习研究综述[J].信息与控制,2018,47(4):385-397.doi:10.13976/j.cnki.xk.2018.8091 ZHANG Rong,LI Weiping,MO Tong.A Review of Deep Learning Research[J].Information and Control,2018,47(4):385-397.
- [6] 阮凌峰.基于深度对抗学习的红外无损检测的应用研究[D].成都:电子科技大学,2020.doi:10.27005/d.cnki.gdzku.2020.000575 RUAN Lingfeng.Application Research of Infrared Nondestructive Testing Based on Deep Adversarial Learning[D].Chengdu:University of Electronic Science and Technology of China,2020
- [7] 张晓如,张再跃.再谈计算机思维[J].计算机教育,2010(23):35-42.doi:10.16512/j.cnki.jsjjy.2010.23.007 ZHANG Xiaoru,ZHANG Zaiyue.Further Discussion on Computational Thinking[J].Computer Education,2010(23):35-42.doi:10.16512/j.cnki.jsjjy.2010.23.007
- [8] LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single Shot Multibox Detector[C]∥ECCV 2016.Computer Vision-ECCV 2016.Cham:Springer.Lecture Notes in Computer Science,2016,9905:21-37.doi:10.1007/978-3-319-46448-0_2
- [9] REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-time Object Detection[C]∥IEEE.2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2015:779-788.doi:10.1109/CVPR.2016.91
- [10] CUI Y,JIA M,LIN T,et al.Class-balanced Loss Based on Effective Number of Samples[C]∥IEEE.2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach:IEEE,2019:9260-9269.doi:10.1109/CVPR.2019.00949
- [11] ZHANG H,CISSE M,DAUPHIN Y N,et al.Mixup:Beyond Empirical Risk Minimization[C]∥ICLR.International Conference on Learning Representations.ICLR:ICLR,2018.
- [12] 李艳梅.图像增强的相关技术及应用研究[D].成都:电子科技大学,2013. LI Yanmei.Research on Related Technologies and Applications of Image Enhancement[D].Chengdu:University of Electronic Science and Technology of China,2013.
- [13] ZHANG Z.Improved Adam Optimizer for Deep Neural Networks[C]∥IEEE.2018 IEEE/ACM International Workshop on Quality of Service.IEEE:IEEE,2018:1-2.doi:10.1109/IWQoS.2018.8624183
- [14] SZEGEDV C,IOFFE S,VANHOUCKE V,et al.Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning[C]∥AAAI.Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence.AAAI:AAAI,2017:4278-4284.doi:10.1609/aaai.v31i1.11231
- [15] Everingham M.,Van Gool L,Williams C K I,et al.The Pascal Visual Object Classes (VOC) Challenge [J].International Journal of Computer Vision,2010,88:303-338.doi:10.1007/s11263-009-0275-4
- [16] 贾帅康,孙海蓉,苏子凡.改进的残差网络对红外图像热斑状态分类研究[J].工业控制计算机,2021,34(2):79-82. JIA Shuaikang,SUN Hairong,SU Zifan.Research on Infrared Image Hotspot State Classification Using Improved Residual Networks [J].Industrial Control Computer,2021,34(2):79-82.
- [17] CHEN T Y,KUO F,LIU H,et al.Metamorphic Testing[J]ACM Computing Surveys,2018,51(1):1-27.doi:10.1145/3143561