期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

辅助场量子蒙特卡罗方法的Python实现及应用

  • (1.河北师范大学 物理学院,河北 石家庄 050024; 2.衡水学院 电子信息工程学院,河北 衡水 053000)
  • DOI: 10.13763/j.cnki.jhebnu.nse.202302014

Implementation of Auxiliary Field Quantum Monte-Carlo Calculation with Python and Its Applications

摘要/Abstract

摘要:

辅助场量子蒙特卡罗方法是强关联电子体系常用的数值计算方法.使用Python语言,实现了单带Hubbard模型的辅助场量子蒙特卡罗数值计算的图形用户界面程序,并利用该程序计算了二维四方格子的基态能量.所实现的程序可以作为下一步开发的基础,解决其他强关联问题.

Abstract:

Auxiliary field quantum Monte-Carlo method is widely used for numerical calculation of strongly correlated electronic systems. A graphical user interface(GUI)for auxiliary field quantum Monte-Carlo calculation based-on single band Hubbard model has been implemented with Python programming language. The ground state energy of two-dimensional square lattices was calculated by the program,which can be used as a template for further development to solve other strong correlation problems.

参考文献 12

  • [1] ANDERSON P W.More Is Different[J].Science,1972,177(4047):393-396.doi:10.1126/science.177.4047.393
  • [2] DAGOTTO E.Complexity in Strongly Correlated Electronic Systems[J].Science,2005,309(5732):257-262.doi:10.1126/sci-ence.1107559
  • [3] FELDMAN B E.Squeezing Strong Correlations from Graphene[J].Science,2019,363(6431):1035-1036.doi:10.1126/science.aaw464
  • [4] 张宇钟.轨道选择性相变——多轨道物理中一类独特的现象[J].物理,2014,43(5):309-318.doi:10.7693/wl201405053 ZHANG Yuzhong.Orbital Selective Phase Transitionse—A Unique Phenomenon in Multi-oribital Systems[J].Phy-sics,2014,43(5):309-318.
  • [5] HONERKAMP C,RICE T M.Single Band Model for the Unconventional Superconductivity in Both Cuprates and Ruthenates[J].Physica C,2003,388/389:11-14.doi:10.1016/s0921-4534(02)02603-5
  • [6] SAKAKIBARA H,USUI H,KUROKI K,et al.Two-orbital Model Explains the Higher Transition Temperature of the Single-layer Hg-cuprate Superconductor Compared to That of the La-cuprate Superconductor[J].Physical Review Let-ters,2010,105:057003.doi:10.1103/PhysRevLett.105.057003
  • [7] LUO Q L,FOYEVTSOVA K,SAMOLYUK G D,et al.Magnetic States of the Five-orbital Hubbard Model for One-dimensional Iron-based Superconductors[J].Physical Review B,2014,90:035128.doi:10.1103/PhysRevB.90.035128
  • [8] KITATANI M,SI L,JANSON O,et al.Nickelate Superconductors—A Renaissance of the One-band Hubbard Model[J].npj Quantum Materials,2020,5:59.doi:10.1038/s41535-020-00260-y
  • [9] RACZKOWSKI M,PETERS R,PHUNG T T,et al.Hubbard Model on the Honeycomb Lattice:From Static and Dynamical Mean-field Theories to Lattice Quantum Monte Carlo Simulations[J].Physical Review B,2020,101:125103.doi:10.1103/PhysRevB.101.125103
  • [10] AVELLA A,MANCINI F.Strongly Correlated Systems:Numerical Methods[M].Heidelberg:Springer Berlin,2013.doi:10.1007/978-3-642-35106-8
  • [11] NGUYEN H,SHI H,XU J,et al.CPMC-Lab:A Matlab Package for Constrained Path Monte Carlo Calculations[J].Computer Physics Communications,2014,185:3344-3357.doi:10.1016/j.cpc.2014.08.003
  • [12] HIRSCH J E.Discrete Hubbard-stratonovich Transformation for Fermion Lattice Models[J].Physical Review B,1983,28:4059.doi:10.1103/PhysRevB.28.4059