期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

大气压氩气同轴介质阻挡放电的电学特性

  • (河北工程大学 数理科学与工程学院,河北省计算光学成像与光电检测技术创新中心, 河北省计算光学成像与智能感测国际联合研究中心,河北 邯郸 056038)
  • DOI: 10.13763/j.cnki.jhebnu.nse.202302010

Electrical Characteristics of the Coaxial Dielectric Barrier Discharge in Ar at Atmospheric Pressure

摘要/Abstract

摘要:

主要研究了同轴介质阻挡放电的电学特性、基础参数,并构造了仿真电路模型.研究发现,随着外加电压的增大,介质电容增大,气隙电容减少.通过不同半径的内电极进行实验显示气隙电 容与半径成反比关系,在输入功率的研究中发现半径也是关键因素.在功率因数与外加电压的研究中则发现其变化趋势不具有单调性,存在极大值点,具有重要意义,为工业化过程中寻找最优工况 提供了参考.利用软件构造了仿真电路模型,较好地吻合了实验中的放电参数,有利于后续的研究中对一些不易实验获得的参数进行估算.

Abstract:

The discharge characteristics and basic parameters of coaxial dielectric barrier discharge are studied,and the simulation circuit model is constructed.It is found that the dielectric capacitance increases and the gas gap capacitance decreases with the increase of applied voltage.Experiments with internal electrodes of different radius show that the gas gap capacitance is inversely proportional to the radius,and the radius is also a key factor.In the study of input power.In the study of power factor,it is found that the variation trend of power factor is not monotonic,and there is a maximum point,which is of great significance and provides a reference for finding the optimal condition in industrialization.The simulation circuit model is constructed by software,which is in good agreement with the experiment.The model is conducive to the estimation of some parameters that are not easy to be obtained experimentally in the later research.

参考文献 19

  • [1] PRIYADARSHINI R,PHILIPP M,NIKITA B,et al.DBD Plasma Source Operated in Single-filamentary Mode for Therapeuticuse in Dermatology[J].Journal of Physics D Applied Physics:A Europhysics Journal,2009,42 (22):225201.doi:10.1088/0022-3727/42/22/225201
  • [2] BOEKEMA B K H L,VLIG M,GUIJT D,et al.A New Flexible DBD Device for Treating Infected Wounds:In Vitro and Ex Vivo Evaluation and Comparison with a RF Argon Plasma Jet[J].Journal of Physics D Applied Physics:AEurophysics Journal,2016,49(4):044001.doi:10.1088/0022-3727/49/4/044001
  • [3] MAROTTA E,CERIANI E,SHAPOVAL V,et al.Characterization of Plasma-induced Phenol Advanced Oxidation Process in a DBD Reactor[J].The European Physical Journal Applied Physics,2011,55(1):13811-1-13811-4.doi:10.1051/epjap/2011110024
  • [4] WU J C,WU K Y,CHEN J Y,et a1.Influence of Air Addition on Surface Modification of Polyethylene Terephthalate Treated by an Atmospheric Pressure Argon Plasma Brush[J].Plasma Science and Technology,2021,23(8): 085504.doi:10.1088/2058-6272/ac0109
  • [5] LU X P,OSTRIKOV K.Guided Ionization Waves:The Physics of Repeatability[J ].Applied Physics Reviews,2018,5(3):031102.doi:10.1063/1.5031445
  • [6] HUANG Y H,WANG M J.Atmospheric Pressure Plasma Jet-assisted Copolymerization of Sulfobetainemethacrylate and Acrylic Acid[J].Plasma Processes and Polymers,2020,17(4):e1900209.doi:10.1002/ppap.201900209
  • [7] LI X C,WU J C,JIA B Y,et a1.Generation of a Large-scale Uniform Plasma Plume Through the Interactions Between a Pair of Atmospheric Pressure Argon Plasma Jets[J].Applied Physics Letters,2020,117(13):134102.doi:10.1063/ 5.0027061
  • [8] YANG S H,ZHA() T,CUI J X,et a1.Molecular Dynamics Simulations of the Interaction Between OH Radicals in Plasma with Poly-8-1-6-N-acetylglucosamine [J].Plasma Science and Technology,2020,22(12):125401.doi:10.1088/2058-6272/ abb454
  • [9] LI X C,WANG B,JIA P Y,et a1.Three Modes of a Direct-current Plasma Jet Operated Underwater to Degrade Methylene Blue[J].Plasma Science and Technology,2017,19(11):115505.doi:10.1088/2058-6272/aa86a6
  • [10] LI X C,LI X N,GA() K,et a1.Comparison of Deionized and Tap Water Activated with an Atmospheric Pressure Glow Discharge[J].Physics of Plasmas,2019,26(3): 033507.doi:10.1063/1.5080184
  • [11] CHEN Z Q,LIU X D,Z()U C L,et a1.Donut Shape Plasma Jet Plumes Generatedby Microwave Pulses Even Without Air Molefractions[J].Journal of Applied Physics,2017,121(2):023302.doi:10.1063/1.4973851
  • [12] WANG R X,SUN H,ZHU W D,et a1.Uniformity Optimization and Dynamic Studies of Plasma Jet Array Interaction in Argon[J].Physics of Plasmas,2017,24(9): 093507.doi:10.1063/1.4998469
  • [13] YAMADA H,KATO S,SHIMIZU T,et a1.Striation Phenomena in a Low Temperature Atmospheric Pressure Neon Plasma Jet by Optical Emission Spectroscopy[J].Physics of Plasmas,2020,27(2):022107.doi:10.1063/1.5124122
  • [14] FANG Z,YANG J,LIU Y.Surface Treatment of Polyethylene Terephthalate to Improving Hydrophilicity Using Atmospheric Pressure Plasma Jet[J].IEEE Trans Plasma Sci,2013,41(6):1627-1634.doi:10.1109/tps.2013.2259508
  • [15] TAKANA H,TANAKA Y,NISHIYAMA H.Computational Simulation of Reactive Species Production by Methane-air DBD at High Pressure and High Temperature[J ].EPL,2012,97(2):25001-1-25001-4.doi:10.1209/0295-5075/97/25001
  • [16] CHANG I,NIE I,XIAN Y,et a1.The Effect of Seed Electrons on the Repeat Ability of Atmospheric Pressure Plasma Plume Propagation II:Modeling[J].Physics of Plasmas,2016,23(12):123513.doi:10.1063/1.4971803
  • [17] de GEYTER N,MORENT R,DESMET T,et al.Plasma Modification of Polylactic Acid in a Medium Pressure DBD[J].Surface & Coatings Technology,2010,204(20):3272- 3279.doi:10.1016/j.surfcoat.2010.03.037
  • [18] MOHAMMED F B,LUCIEN D,YOUCEF B,et al.Modification of Surface Characteristic and Tribo-electric Properties of Polymers by DBD Plasma in Atmospheric Air[J].The European Physical Journal Applied Physics,2018,81 (1):170149.doi:10.1051/epjap/2017170149
  • [19] REN Y,XU L,WANG C.Effect of Dielectric Barrier Discharge Treatment on Surface Nanostructure and Wettability of Polylactic Acid(PLA) Nonwoven Fabrics [J].Appl Surf Sci,2017,426:612-621.doi:10.1016/j.apsusc.2017.07.211