期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

铁基纳米材料在肿瘤化学动力学治疗中的研究进展

  • (河北师范大学 生命科学学院,河北 石家庄 050024)
  • DOI: 10.13763/j.cnki.jhebnu.nse.202304005

Research Progress of Iron-based Nanomaterials in Tumor Chemodynamic Therapy

摘要/Abstract

摘要:

化学动力学疗法(chemodynamic therapy,CDT)是一种由活性氧(reactive oxygen species,ROS)介导,借助肿瘤微环境(tumor microenviroment,TME)特性在肿瘤原位发生Fenton或类Fenton反应生成羟基自由基·OH,诱导肿瘤细胞损伤和凋亡的治疗方法. 铁基材料最早应用于CDT,对 近些年应用于CDT的铁基材料进行综述,简述了目前铁基纳米材料在临床上的发展状况并详细论述了3类铁基纳米材料:晶体铁纳米材料、非晶体铁纳米材料、铁基金属有机框架纳米材料在肿瘤治疗上的应用,旨在为铁基纳米材料在肿瘤CDT上的进一步研究提供参考.

Abstract:

Chemodynamic therapy (CDT) is a therapeutic approach mediated by reactive oxygen species (ROS) that induces tumor cell damage and apoptosis by generating hydroxyl radicals in tumor in situ with the help of tumor microenvironment (TME) properties by Fenton or Fenton-like reactions. Fe-based materials were first used in CDT. In this paper,the Fe-based materials used in CDT in recent years were reviewed. The current clinical development of Fe-based nanomaterials were briefly introduced,and the application of three Fe-based nanomaterials,including crystalline Fe-based nanomaterials,amorphous Fe-based nanomaterials and Fe-based organic framework nanomaterials,in tumor therapy were discussed in detail,aiming to provide reference for further research of Fe-based nanomaterials on tumor CDT.

参考文献 70

  • [1] SUNG H,FERLAY J,SIEGEL R L,et al. Global Cancer Statistics 2020:GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA:A Cancer Journal for Clinicians,2021,71(3):209-249. doi:10. 3322/caac. 21660
  • [2] CHEN W,ZHENG R,BAADE P D,et al. Cancer Statistics in China,2015[J]. CA:A Cancer Journal for Clinicians,2016,66(2):115-132. doi:10. 3322/caac. 21338
  • [3] SIEGEL R L,MILLER K D,GODING S A,et al. Colorectal Cancer Statistics,2020[J]. CA:A Cancer Journal for Clinicians,2020,70(3):145-164. doi:10. 3322/caac. 21590
  • [4] FERLAY J,COLOMBET M,SOERJOMATARAM I,et al. Cancer Statistics for the Year 2020:An Overview[J]. International Journal of Cancer,2021,149(4):778-789. doi:10. 1002/ijc. 33588
  • [5] KLONIS N,CRESPO-ORTIZ M P,BOTTOVA I,et al. Artemisinin Activity Against Plasmodium Falciparum Requires Hemoglobin Uptake and Digestion[J]. Proceedings of the National Academy of Sciences,2011,108(28):11405-11410. doi:10. 1073/pnas. 1104063108
  • [6] DIXON S J,LEMBERG K M,LAMPRECHT M R,et al. Ferroptosis:An Iron-dependent form of Nonapoptotic Cell Death[J]. Cell,2012,149(5):1060-1072. doi:10. 1016/j. cell. 2012. 03. 042
  • [7] MARUOKA Y,WAKIYAMA H,CHOYKE P L,et al. Near Infrared Photoimmunotherapy for Cancers:A Translational Perspective[J]. Ebiomedicine,2021,70:103501. doi:10. 1021/acs. accounts. 9b00273
  • [8] MENG X Y,ZHANG X Z,LIU M,et al. Fenton Reaction-based Nanomedicine in Cancer Chemodynamic and Synergistic Therapy[J]. Applied Materials Today,2020,21:100864. doi:10. 1016/j. apmt. 2020. 100864
  • [9] ZHANG X Y,ZHANG P Y. Nanotechnology for Multimodality Treatment of Cancer (Review)[J]. Oncology Letters,2016,12(6):4883-4886. doi:10. 3892/ol. 2016. 5322
  • [10] HUANG H,FENG W,CHEN Y,et al. Inorganic Nanoparticles in Clinical Trials and Translations[J]. Nano Today,2020,35:100972. doi:10. 1016/j. nantod. 2020. 100972
  • [11] EL-BOUBBOU K. Magnetic Iron Oxide Nanoparticles as Drug Carriers:Clinical Relevance[J]. Nanomedicine,2018,13(8):953-971. doi:10. 2217/nnm-2017-0336
  • [12] REVIA R A,ZHANG M Q. Magnetite Nanoparticles for Cancer Diagnosis,Treatment,and Treatment Monitoring:Recent Advances[J]. Materials Today,2016,19(3):157-168. doi:10. 1016/j. mattod. 2015. 08. 022
  • [13] XUAN W J,XIA Y H,LI T,et al. Molecular Self-assembly of Bioorthogonal Aptamer-prodrug Conjugate Micelles for Hydrogen Peroxide and Ph-independent Cancer Chemodynamic Therapy[J]. Journal of the American Chemical Society,2019,142(2):937-944. doi:10. 1021/jacs. 9b10755
  • [14] ZHANG C,BU W B,NI D L,et al. Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction[J]. Angewandte Chemie International Edition,2016,128(6):2141-2146. doi:10. 1002/anie. 201510031
  • [15] TANG Z M,LIU Y Y,HE M Y,et al. Chemodynamic Therapy:Tumour Microenvironment-mediated Fenton and Fenton-like Reactions[J]. Angewandte Chemie International Edition,2019,58(4):946-95. doi:10. 1002/anie. 201805664
  • [16] LIN L S,WANG S,DENG H S,et al. Endogenous Labile Iron Pool-mediated Free Radical Generation for Cancer Chemodynamic Therapy[J]. Journal of the American Chemical Society,2020,142(36):15320-15330. doi:10. 1021/jacs. 0c05604
  • [17] ZENG K,XU Q F,OUYANG J,et al. Coordination Nanosheets of Phthalocyanine as Multifunctional Platform for Imaging-guided Synergistic Therapy of Cance[J]. ACS Applied Materials & Interfaces,2019,11(7):6840-6849. doi:10. 1021/acsami. 8b22008
  • [18] CHEN Y,HUANG Y K,ZHOU S L,et al. Tailored Chemodynamic Nanomedicine Improves Pancreatic Cancer Treatment via Controllable Damaging Neoplastic Cells and Reprogramming Tumor Microenvironment[J]. Nano Lett ers,2020,20(9):6780-6790. doi:10. 1021/acs. nanolett. 0c02622
  • [19] CHEN Q,FENG L Z,LIU J J,et al. Intelligent Albumin-MnO2 Nanoparticles as pH-/H2O2-responsive Dissociable Nanocarriers to Modulate Tumor Hypoxia for Effective Combination Therapy[J]. Advanced Materials,2016,28(33):7129-7136. doi:10. 1002/adma. 201601902
  • [20] ZHAO D H,LI C Q,HOU X L,et al. Tumor Microenvironment-activated Theranostics Nanozymes for Fluorescence Imaging and Enhanced Chemo-chemodynamic Therapy of Tumors[J]. ACS Applied Materials & Interfaces,2021,13(47):55780-55789. doi:10. 1021/acsami. 1c12611
  • [21] D'AUTREAUX B,TOLEDANO M B. ROS as Signalling Molecules:Mechanisms That Generate Specificity in ROS Homeostasis[J]. Nature Reviews Molecular Cell Biology,2007,8(10):813-824. doi:10. 1038/nrm2256
  • [22] TRACHOOTHAM D,ALEXANDRE J,HUANG P. Targeting Cancer Cells by ROS-mediated Mechanisms:A Radical Therapeutic Approach?[J]. Nature Reviews Drug Discovery,2009,8(7):579-591. doi:10. 1038/nrd2803
  • [23] LIOU G Y,STORZ P. Reactive Oxygen Species in Cancer[J]. Free Radical Research,2010,44(5):479-496. doi:10. 3109/10715761003667554
  • [24] REN Z G,SUN S C,SUN R R,et al. A Metal-polyphenol-coordinated Nanomedicine for Synergistic Cascade Cancer Chemotherapy and Chemodynamic Therapy[J]. Advanced Materials,2020,32(6):1906024. doi:10. 1002/adma. 201906024
  • [25] WANG Z Z,ZHANG Y,JU E G,et al. Biomimetic Nanoflowers by Self-assembly of Nanozymes to Induce Intracellular Oxidative Damage Against Hypoxic Tumors[J]. Nature Communications,2018,9(1):1-14. doi:10. 1038/s41467-018-05798-x
  • [26] WANG D D,ZHOU J J,CHEN R H,et al. Magnetically Guided Delivery of DHA and Fe Ions for Enhanced Cancer Therapy Based on pH-responsive Degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) Nanoparticles[J]. Biomaterials,2016:88-101 doi:10. 1016/j. biomaterials. 2016. 08. 039
  • [27] WANG X X,XU J T,YANG D,et al. Fe3O4@MIL-100 (Fe)-Ucnps Heterojunction Photosensitizer:Rational Design and Application in Near Infrared Light Mediated Hypoxic Tumor Therapy[J]. Chemical Engineering Journal,2018,354:1141-1152. doi:10. 1016/j. cej. 2018. 08. 070
  • [28] JIA C Z,LIU H W,HU Y X,et al. NIR-responsive Fe3O4@MSN@Ppy-PVP Nanoparticles as the Nano-enzyme for Potential Tumor Therapy[J]. ChemistrySelect,2021,6(25):6564-6573. doi:10. 1002/slct. 202101163
  • [29] YOU C Q,GAO Z G,WU H S,et al. Reactive Oxygen Species Mediated Theranostics Using a Fenton Reaction Activable Lipo-polymersome[J]. Journal of Materials Chemistry B,2019,7(2):314-323. doi:10. 1039/c8tb02947d
  • [30] ZHAO Z H,WANG W Q,LI C X,et al. Reactive Oxygen Species-activatable Liposomes Regulating Hypoxic Tumor Microenvironment for Synergistic Photo/chemodynamic Therapies[J]. Advanced Functional Materials,2019,29(44):1905013. doi:10. 1002/adfm. 201905013
  • [31] JANG J,LEE J,SEON J,et al. Giant Magnetic Heat Induction of Magnesium-doped Γ-Fe2O3 Superparamagnetic Nanoparticles for Completely Killing Tumors[J]. Advanced Materials,2018,30(6):1704362. doi:10. 1002/adma. 201704362
  • [32] MANSOURI N,JALAL R,AKHLAGHINIA B,et al. Design and Synthesis of Aptamer AS1411-conjugated EG@Tio2@Fe2O3 Nanoparticles as a Drug Delivery Platform for Tumor-targeted Therapy[J]. New Journal of Chemistry,2020,44(37):15871-15886. doi:10. 1039/c9nj06445a
  • [33] CHOI G H,SEO S J,KIM K H,et al. Photon Activated Therapy (PAT) Using Monochromatic Synchrotron X-rays and Iron Oxide Nanoparticles in a Mouse Tumor Model:Feasibility Study of PAT for the Treatment of Superficial Malignancy[J]. Radiation Oncology,2012,7(1):1-10. doi:10. 1186/1748-717x-7-184
  • [34] WANG Z Y,JU Y M,ALI Z,et al. Near-infrared Light and Tumor Microenvironment Dual Responsive Size-switchable Nanocapsules for Multimodal Tumor Theranostics[J]. Nature Communications,2019,10(1):1-12. doi:10. 1038/s41467-019-12142-4
  • [35] WU X,YAN P J,REN Z H,et al. Ferric Hydroxide-modified Upconversion Nanoparticles for 808 Nm NIR-triggered Synergetic Tumor Therapy with Hypoxia Modulation[J]. ACS Applied Materials & Interfaces,2018,11(1):385-393. doi:10. 1021/acsami. 8b18427
  • [36] ZHANG X J,HE C C,CHEN Y,et al. Cyclic Reactions-mediated Self-supply of H2O2 and O2 for Cooperative Chemodynamic/starvation Cancer Therapy[J]. Biomaterials,2021,275:120987. doi:10. 1016/j. biomaterials. 2021. 120987
  • [37] SHE D J,PENG S J,LIU L,et al. Biomimic Fes2 Nanodrug with Hypothermal Photothermal Effect by Clinical Approved NIR-Ⅱ Light for Augmented Chemodynamic Therapy[J]. Chemical Engineering Journal,2020,400:125933. doi:10. 1016/j. cej. 2020. 125933
  • [38] XIAO S T,LU Y,FENG M,et al. Multifunctional FeS2 Theranostic Nanoparticles for Photothermal-enhanced Chemodynamic/photodynamic Cancer Therapy and Photoacoustic Imaging[J]. Chemical Engineering Journal,2020,396:125294. doi:10. 1016/j. cej. 2020. 125294
  • [39] TANG Z M,ZHANG H L,LIU Y Y,et al. Antiferromagnetic Pyrite as the Tumor Microenvironment-mediated Nanoplatform for Self-enhanced Tumor Imaging and Therapy[J]. Advanced Materials,2017,29(47):1701683. doi:10. 1002/adma. 201701683
  • [40] FANG X Y,WU X L,LI Z D,et al. Biomimetic Anti-PD-1 Peptide-loaded 2D FePSe3 Nanosheets for Efficient Photothermal and Enhanced Immune Therapy with Multimodal MR/PA/Thermal Imaging[J]. Advanced Science,2021,8(2):2003041. doi:10. 1002/advs. 202003041
  • [41] LU J,YANG J,YANG D,et al. CuFeSe2-based Thermo-responsive Multifunctional Nanomaterial Initiated by a Single NIR Light for Hypoxic Cancer Therapy[J]. Journal of Materials Chemistry B,2021,9(2):336-348. doi:10. 1039/d0tb01599g
  • [42] WANG Z J,WANG Y,GUO H H,et al. Synthesis of One-for-all Type Cu5FeS4 Nanocrystals with Improved Near Infrared Photothermal and Fenton Effects for Simultaneous Imaging and Therapy of Tumor[J]. Journal of Colloid and Interface Science,2021,592:116-126. doi:10. 1016/j. jcis. 2021. 02. 037
  • [43] CHERTOK B,MOFFAT B A,DAVID A E,et al. Iron Oxide Nanoparticles as a Drug Delivery Vehicle for MRI Monitored Magnetic Targeting of Brain Tumors[J]. Biomaterials,2008,29(4):487-496. doi:10. 1016/j. biomaterials. 2007. 08. 050
  • [44] HILGER I,HIERGEIST R,HERGT R,et al. Thermal Ablation of Tumors Using Magnetic Nanoparticles:An in Vivo Feasibility Study[J]. Investigative Radiology,2002,37(10):580-586. doi:10. 1097/00004424-200210000-00008
  • [45] BULLIVANT J P,ZHAO S,WILLENBERG B J,et al. Materials Characterization of Feraheme/ferumoxytol and Preliminary Evaluation of Its Potential for Magnetic Fluid Hyperthermia[J]. International Journal of Molecular Sciences,2013,14(9):17501-17510. doi:10. 3390/ijms140917501
  • [46] DóSA E,GUILLAUME D J,HALUSKA M,et al. Magnetic Resonance Imaging of Intracranial Tumors:Intra-patient Comparison of Gadoteridol and Ferumoxytol[J]. Neuro-oncology,2011,13(2):251-260. doi:10. 1093/neuonc/noq172
  • [47] GAO L Z,ZHUANG J,NIE L,et al. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles[J]. Nature Nanotechnology,2007,2(9):577-583. doi:10. 1038/nnano. 2007. 260
  • [48] VAN LANDEGHEM F K H,MAIER-HAUFF K,JORDAN A,et al. Post-mortem Studies in Glioblastoma Patients Treated with Thermotherapy Using Magnetic Nanoparticles[J]. Biomaterials,2009,30(1):52-57. doi:10. 1016/j. biomaterials. 2008. 09. 044
  • [49] ANSELMO A C,MITRAGOTRI S. A Review of Clinical Translation of Inorganic Nanoparticles[J]. The AAPS Journal,2015,17(5):1041-1054. doi:10. 1208/s12248-015-9780-2
  • [50] GUAN G Q,WANG X,LI B,et al. “Transformed” Fe3S4 Tetragonal Nanosheets:A High-efficiency and Body-clearable Agent for Magnetic Resonance Imaging Guided Photothermal and Chemodynamic Synergistic Therapy[J]. Nanoscale,2018,10(37):17902-17911. doi:10. 1039/c8nr06507a
  • [51] WU F,ZHANG Q C,ZHANG M,et al. Hollow Porous Carbon Coated FeS2-based Nanocatalysts for Multimodal Imaging-guided Photothermal,Starvation,and Triple-enhanced Chemodynamic Therapy of Cancer[J]. ACS Applied Materials & Interfaces,2020,12(9):10142-10155. doi:10. 1021/acsami. 0c00170
  • [52] SHI Y H,ZHANG J J,HUANG H,et al. Fe-doped Polyoxometalate as Acid-aggregated Nanoplatform for NIR-II Photothermal-enhanced Chemodynamic Therapy[J]. Advanced Healthcare Materials,2020,9(9):2000005. doi:10. 1002/adhm. 202000005
  • [53] LV R M,DU K K,LIU Q Q,et al. Nano Iron-copper Alloys for Tumor Ablation:Efficiently Amplified Oxidative Stress Through Acid Response[J]. New Journal of Chemistry,2020,44(34):14438-14446. doi:10. 1039/d0nj02554b
  • [54] YANG B C,DAI Z C,ZHANG G R,et al. Ultrasmall Ternary Feptmn Nanocrystals with Acidity-triggered Dual-ions Release and Hypoxia Relief for Multimodal Synergistic Chemodynamic/photodynamic/photothermal Cancer Therapy[J]. Advanced Healthcare Materials,2020,9 (21):1901634. doi:10. 1002/adhm. 201901634
  • [55] JIA T,WANG Z,SUN Q Q,et al. Intelligent Fe-Mn Layered Double Hydroxides Nanosheets Anchored with Upconversion Nanoparticles for Oxygen-elevated Synergetic Therapy and Bioimaging[J]. Small,2020,16(46):2001343. doi:10. 1002/smll. 202001343
  • [56] WAN X Y,ZHONG H,PAN W,et al. Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCo3 Mineralized Metal-organic Framework[J]. Angewandte Chemie International Edition,2019,58(40):14134-14139. doi:10. 1002/anie. 201907388
  • [57] ZHANG S C,CAO C Y,LV X Y,et al. A H2O2 Self-sufficient Nanoplatform with Domino Effects for Thermal-responsive Enhanced Chemodynamic Therapy[J]. Chemical Science,2020,11(7):1926-1934. doi:10. 1039/c9sc05506a
  • [58] SUO M,LIU Z M,TANG W X,et al. Development of a Novel Oxidative Stress-amplifying Nanocomposite Capable of Supplying Intratumoral H2O2 and O2 for Enhanced Chemodynamic Therapy and Radiotherapy in Patient-derived Xenograft (PDX) Models[J]. Nanoscale,2020,12 (45):23259-23265. doi:10. 1039/d0nr06594c
  • [59] WANG W T,ZHANG Q C,ZHANG M,et al. Multifunctional Red Carbon Dots:A Theranostic Platform for Magnetic Resonance Imaging and Fluorescence Imaging-guided Chemodynamic Therapy[J]. Analyst,2020,145(10):3592-3597. doi:10. 1039/d0an00267d
  • [60] 杨博文,陈雨,施剑林. 纳米酶在肿瘤催化诊疗方面的应用(英文)[J]. 生物化学与生物物理进展,2018,45(2):237-255. doi:10. 16476/j. pibb. 2017. 0466 YANG B W,CHEN Y,SHI J L. Application of Nanozymes in Tumor Catalysis Diagnosis and Treatment (English)[J]. Progress in Biochemistry and Biophysics,2018,45(2):237-255.
  • [61] CHEN X Y,ZHANG H L,ZHANG M,et al. Amorphous Fe-based Nanoagents for Self-enhanced Chemodynamic Therapy by Re-establishing Tumor Acidosis[J]. Advanced Functional Materials,2020,30(6):1908365. doi:10. 1002/adfm. 201908365
  • [62] LI M H,ZHANG H,HOU Y H,et al. State-of-the-art Iron-based Nanozymes for Biocatalytic Tumor Therapy[J]. Nanoscale Horizons,2020,5(2):202-217. doi:10. 1039/c9nh00577c
  • [63] JAMES S L. Metal-organic Frameworks[J]. Chemical Society Reviews,2003,32(5):276-288. doi:10. 1039/b200393g
  • [64] WANG X W,ZHONG X Y,LIU Z,et al. Recent Progress of Chemodynamic Therapy-induced Combination Cancer Therapy[J]. Nano Today,2020,35:100946. doi:10. 1016/j. nantod. 2020. 100946
  • [65] YIN S Y,LIU W,YANG J F,et al. Synergistically Enhanced Multienzyme Catalytic Nanoconjugates for Efficient Cancer Therapy[J]. Journal of Materials Chemistry B,2021,9(29):5877-5886. doi:10. 1039/d1tb00821h
  • [66] DENG Z,FANG C,MA X,et al. One Stone Two Birds:Zr-Fc Metal-organic Framework Nanosheet for Synergistic Photothermal and Chemodynamic Cancer Therapy[J]. ACS Applied Materials & Interfaces,2020,12(18):20321-20330. doi:10. 1021/acsami. 0c06648
  • [67] LI A X,YANG X X,CHEN J. A Novel Route To Size-controlled MIL-53 (Fe) Metal-organic Frameworks for Combined Chemodynamic Therapy and Chemotherapy for Cancer[J]. RSC Advances,2021,11(18):10540-10547. doi:10. 1039/d0ra09915e
  • [68] CHEN Q,SHAN X R,SHI S Q,et al. Tumor Microenvironment-responsive Polydopamine-based Core/shell Nanoplatform for Synergetic Theranostics[J]. Journal of Materials Chemistry B,2020,8(18):4056-4066. doi:10. 1039/d0tb00248h
  • [69] GUO Y X,JIA H R,ZHANG X D,et al. A Glucose/oxygen-exhausting Nanoreactor for Starvation- and Hypoxia-activated Sustainable and Cascade Chemo-chemodynamic Therapy[J]. Small,2020,16(31):2000897. doi:10. 1002/smll. 20200089
  • [70] ZHU H M,CAO G D,QIANG C,et al. Hollow Ferric-tannic Acid Nanocapsules with Sustained O2 and ROS Induction for Synergistic Tumor Therapy[J]. Biomaterials Science,2020,8(14):3844-3855. doi:10. 1039/d0bm00533a