期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

转录组测序解析油菜素甾醇调控番茄根发育的机制

  • (1.华北理工大学 生命科学学院,河北 唐山 063210; 2.华北理工大学 基因组学与计算生物学研究中心,河北 唐山 063210)
  • DOI: 10.13763/j.cnki.jhebnu.nse.202204012

Transcriptome Sequencing Reveals the Mechanism of Brassinosteroids Regulating Tomato Root Development

摘要/Abstract

摘要:

利用生理学实验分析番茄幼苗主根对不同浓度油菜素甾醇(BRs)的响应情况,通过转录组测序寻找番茄幼苗根系在不同浓度BRs处理下的差异表达基因,利用GO与KEGG富集分析探究差异表达基因参与的信号通路. 结果发现,0. 5 nmol/L的表油菜素内酯(eBL,BRs的一种)促进主根伸长,而10 nmol/L的eBL显著抑制主根伸长. 转录组测序发现,与对照相比,10 nmol/L eBL处理共产生585个差异表达基因,其中271个上调和314个下调. 进一步的GO与KEGG富集分析表明,上调的差异基因主要与乙烯合成与代谢、植物激素信号转导和MAPK信号转导有关,暗示BRs可能与乙烯交叉互作调控高浓度BRs对植物主根生长的抑制. 研究结果为BRs参与植物根系发育调控提供了又一证据,也为番茄等农作物生产中科学使用BRs提供了强有力的支撑.

Abstract:

Physiological experiments were conducted to analyze the response of tomato seedlings to different concentrations of brassinosteroids (BRs), and transcriptome sequencing was performed to identify differentially expressed genes (DEGs) in tomato seedling treated with different concentrations of BRs. GO and KEGG enrichment analysis were employed to explore the signaling pathways involving DEGs. The physiological experiments showed that 0. 5 nmol/L eBL promoted primary root elongation, whereas 10 nmol/L eBL significantly inhibited primary root elongation. Transcriptome sequencing revealed that a total of 585 DEGs were identified in tomato seedlings treated with 10 nmol/L eBL, including 271 up-regulated genes and 314 down-regulated genes. Further GO and KEGG enrichment analysis showed that up-regulated differentially expressed genes were mainly involved in ethylene synthesis and metabolism, plant hormone signal transduction and MAPK signal transduction, suggesting that BRs may regulate plant root growth through the crosstalk with ethylene. The results would provide one more evidence that BRs are involved in the regulation of plant root development, and also provide strong support for the scientific use of BRs in the production of tomato and other crops.

参考文献 25

  • [1] CHAIWANON J,WANG W,ZHU J Y,et al. Information Integration and Communication in Plant Growth Regulation [J]. Cell,2016,164(6):1257-1268. doi: 10.1016/j.cell.2016.01.044
  • [2] SEYED R,SHI T,ZHANG D,et al. Genome-wide Expression and Network Analyses of Mutants in Key Brassinosteroid Signaling Genes [J]. BMC Genomics,2021,22(1):465. doi: 10.1186/s12864-021-07778-w
  • [3] LI J,WEN J,LEASE K A,et al. BAK1,An Arabidopsis LRR Receptor-like Protein Kinase,Interacts with BRI1 and Modulates Brassinosteroid Signaling [J]. Cell,2002,110(2):213-222. doi: 10.1016/s0092-8674(02)00812-7
  • [4] NAM K H,LI J.BRI1/BAK1,A Receptor Kinase Pair Mediating Brassinosteroid Signaling [J]. Cell,2002,110(2):203-212. doi: 10.1016/s0092-8674(02)00814-0
  • [5] TANG W,KIM T W,OSES-PRIETO J A,et al. BSKs Mediate Signal Transduction from the Receptor Kinase BRI1 in Arabidopsis [J]. Science,2008,321(5888):557-560. doi: 10.1126/science.1156973
  • [6] KIM T W,GUAN S,BURLINGAME A L,et al. The CDG1 Kinase Mediates Brassinosteroid Signal Transduction from BRI1 Receptor Kinase to BSU1 Phosphatase and GSK3-like Kinase BIN2 [J]. Mol Cell,2011,43(4):561-571. doi: 10.1016/j.molcel.2011.05.037
  • [7] HE J X,GENDRON J M,YANG Y,et al. The GSK3-like Kinase BIN2 Phosphorylates and Destabilizes BZR1,A Positive Regulator of the Brassinosteroid Signaling Pathway in Arabidopsis [J]. Proc Natl Acad Sci U S A,2002,99(15):10185-10190. doi: 10.1073/pnas.152342599
  • [8] TANG W,YUAN M,WANG R,et al. PP2A Activates Brassinosteroid-responsive Gene Expression and Plant Growth by Dephosphorylating BZR1 [J]. Nat Cell Biol,2011,13(2):124-131. doi: 10.1038/ncb2151
  • [9] WANG R,WANG R,LIU M,et al. Nucleocytoplasmic Trafficking and Turnover Mechanisms of BRASSINAZOLE RESISTANT1 in Arabidopsis thaliana [J]. Proc Natl Acad Sci U S A,2021,118(33):e2101838118. doi: 10.1073/pnas.2101838118
  • [10] TIAN Y,FAN M,QIN Z,et al. Hydrogen Peroxide Positively Regulates Brassinosteroid Signaling Through Oxidation of the BRASSINAZOLE-RESISTANT1 Transcription Factor [J]. Nat Commun,2018,9(1):1063. doi: 10.1038/s41467-018-03463-x
  • [11] WANG W,BAI M Y,WANG Z Y.The Brassinosteroid Signaling Network-a Paradigm of Signal Integration [J]. Curr Opin Plant Biol,2014,21:147-153. doi: 10.1016/j.pbi.2014.07.012
  • [12] WANG Z Y,BAI M Y,OH E,et al. Brassinosteroid Signaling Network and Regulation of Photomorphogenesis [J]. Annu Rev Genet,2012,46:701-724. doi: 10.1146/annurev-genet-102209-163450
  • [13] LI J G,FAN M,HUA W,et al. Brassinosteroid and Hydrogen Peroxide Interdependently Induce Stomatal Opening by Promoting Guard Cell Starch Degradation [J]. Plant Cell,2020,32(4):984-999. doi: 10.1105/tpc.19.00587
  • [14] HAO J,YIN Y,FEI S Z.Brassinosteroid Signaling Network:Implications on Yield and Stress Tolerance [J]. Plant Cell Rep,2013,32(7):1017-1030. doi: 10.1007/s00299-013-1438-x
  • [15] KIM H,SHIM D,MOON S,et al. Transcriptional Network Regulation of The Brassinosteroid Signaling Pathway by the BES1-TPL-HDA19 Co-repressor Complex [J]. Planta,2019,250(4):1371-1377. doi: 10.1007/s00425-019-03233-z
  • [16] TIAN Y,ZHAO N,WANG M,et al. Integrated Regulation of Periclinal Cell Division by Transcriptional Module of BZR1-SHR in Arabidopsis Roots [J]. New Phytol,2022,233(2):795-808. doi: 10.1111/nph.17824
  • [17] CHAIWANON J,WANG Z Y.Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots [J]. Curr Biol,2015,25(8):1031-1042. doi: 10.1016/j.cub.2015.02.046
  • [18] UBEDA-TOMAS S,BEEMSTER G T,BENNETT M J.Hormonal Regulation of Root Growth:Integrating Local Activities into Global Behaviour [J]. Trends Plant Sci,2012,17(6):326-331. doi: 10.1016/j.tplants.2012.02.002
  • [19] VISSENBERG K,CLAEIJS N,BALCEROWICZ D,et al. Hormonal Regulation of Root Hair Growth and Responses to the Environment in Arabidopsis [J]. J Exp Bot,2020,71(8):2412-2427. doi: 10.1093/jxb/eraa048
  • [20] WAKEEL A,ALI I,UPRETI S,et al. Ethylene Mediates Dichromate-induced Inhibition of Primary Root Growth by Altering AUX1 Expression and Auxin Accumulation in Arabidopsis thaliana [J]. Plant Cell Environ,2018,41(6):1453-1467. doi: 10.1111/pce.13174
  • [21] KOLTAI H.Strigolactones Activate Different Hormonal Pathways for Regulation of Root Development in Response to Phosphate Growth Conditions [J]. Ann Bot,2013,112(2):409-415. doi: 10.1093/aob/mcs216
  • [22] YAN Q,WANG L,LI X.Gmbehl1,A BES1/BZR1 Family Protein,Negatively Regulates Soybean Nodulation [J]. Sci Rep,2018,8(1):7614. doi: 10.1038/s41598-018-25910-x
  • [23] SHI C,QI C,REN H,et al. Ethylene Mediates Brassinosteroid-induced Stomatal Closure via Galpha Protein-activated Hydrogen Peroxide and Nitric Oxide Production in Arabidopsis [J]. Plant J,2015,82(2):280-301. doi: 10.1111/tpj.12815
  • [24] ZHAO N,ZHAO M,TIAN Y,et al. Interaction Between BZR1 and EIN3 Mediates Signalling Crosstalk Between Brassinosteroids and Ethylene [J]. New Phytol,2021,232(6):2308-2323. doi: 10.1111/nph.17694
  • [25] WANG H Q,SUN L P,WANG L X,et al. Ethylene Mediates Salicylic-acid-induced Stomatal Closure by Controlling Reactive Oxygen Species and Nitric Oxide Production in Arabidopsis [J]. Plant Sci,2020,294:110464. doi: 10.1016/j.plantsci.2020.110464