期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

氮化碳负载铜催化的有机反应研究进展

  • (河北师范大学 化学与材料科学学院,河北省有机功能分子重点实验室,河北 石家庄050024)
  • DOI: 10.13763/j.cnki.jhebnu.nse.202203003

Progress on Carbon Nitride Supported Copper in Organic Reaction

摘要/Abstract

摘要:

石墨相氮化碳(gC3N4)是一种由C,N组成的具有固态石墨结构的新型非金属半导体材料,由于其较高的化学稳定性、独特的电子性能和光学性能,在生物传感、光催化和材料科学等领域有广泛的应用.按反应类型总结了C3N4负载铜作为催化剂在有机合成中的应用,所涉及的反应主要有氧化、还原、偶联和环化反应等.

Abstract:

(gC3N4) is a new type of non-metallic semiconductor material with solid graphite structure composed of C and N. Due to its high chemical stability, unique electronic and optical properties.And it has a wide range of applications in the fields of biology, sensation, photocatalysis and materials science. The recent progress in application of C3N4supported copper as a catalyst in organic reactions including oxidation, reduction, coupling and cyclization is summarized.

参考文献 39

  • [1] LIAO G, GONG Y, ZHANG L, et al. Semiconductor Polymeric Graphitic Carbon Nitride Photocatalysts: The "Holy Grail" for the Photocatalytic Hydrogen Evolution Reaction Under Visible Light [J]. Energ Environ Sci, 2019, 12(7): 2080-2147. doi: 10.1039/c9ee00717b
  • [2] ONG W J, TAN L L, NG Y H, et al. Graphitic Carbon Nitride (gC3N4)-based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? [J]. Chem Rev, 2016, 116(12): 7159-7329. doi: 10.1021/acs.chemrev.6b00075
  • [3] SHEN R, XIE J, LU X, et al. Bifunctional Cu3P Decorated gC3N4 Nanosheets as a Highly Active and Robust Visible-light Photocatalyst for H2 Production [J]. ACS Sustain Chem Eng, 2018, 6(3): 4026-4036. doi: 10.1021/acssuschemeng.7b04403
  • [4] WEN Y, ZHANG J, XU Q, et al. Pore Surface Engineering of Metal-organic Frameworks for Heterogeneous Catalysis [J]. Coord Chem Rev, 2018, 376: 248-276. doi: 10.1016/j.ccr.2018.08.012
  • [5] VERMA S, BAIG R B N, NADAGOUDA M N, et al. Selective Oxidation of Alcohols Using Photoactive VO@gC3N4 [J]. ACS Sustain Chem Eng, 2016, 4(3): 1094-1098. doi: 10.1021/acssuschemeng.5b01163
  • [6] GUO S, TANG Y, XIE Y, et al. P-doped Tubular gC3N4 with Surface Carbon Defects: Universal Synthesis and Enhanced Visible-light Photocatalytic Hydrogen Production [J]. Appl Catal B-Environ, 2017, 218: 664-671. doi: 10.1016/j.apcatb.2017.07.022
  • [7] BELLARDITA M, GARCIA-LOPEZ E I, MARCI G, et al. Selective Photocatalytic Oxidation of Aromatic Alcohols in Water by Using Pdoped gC3N4 [J]. Appl Catal B-Environ, 2018, 220: 222-233. doi: 10.1016/j.apcatb.2017.08.033
  • [8] ZHANG M, BAI X, LIU D, et al. Enhanced Catalytic Activity of Potassium-doped Graphitic Carbon Nitride Induced by Lower Valence Position [J]. Appl Catal B-Environ, 2015, 164: 77-81. doi: 10.1016/j.apcatb.2014.09.020
  • [9] CHEN J, SHEN S, GUO P, et al. In-situ Reduction Synthesis of Nano-sized Cu2O Particles Modifying gC3N4 for Enhanced Photocatalytic Hydrogen Production [J]. Appl Catal B-Environ, 2014, 152: 335-341. doi: 10.1016/j.apcatb.2014.01.047
  • [10] ZHANG P, WANG T, ZENG H. Design of CuCu2O/g-C3N4 Nanocomponent Photocatalysts for Hydrogen Evolution Under Visible Light Irradiation Using Water-soluble Erythrosin B Dye Sensitization [J]. Appl Surf Sci, 2017, 391: 404-414. doi: 10.1016/j.apsusc.2016.05.162
  • [11] YE S, QIU L G, YUAN Y P, et al. Facile Fabrication of Magnetically Separable Graphitic Carbon Nitride Photocatalysts with Enhanced Photocatalytic Activity Under Visible Light [J]. J Mater Chem A, 2013, 1(9): 3008-3015. doi: 10.1039/c2ta01069k
  • [12] LU J, MA E Q, LIU Y H, et al. One-pot Three-component Synthesis of 1, 2, 3-triazoles Using Magnetic NiFe2O4-glutamate-Cu as an Efficient Heterogeneous Catalyst in Water [J]. RSC Adv, 2015, 5(73): 59167-59185. doi: 10.1039/c5ra09517d
  • [13] ZHANG M, LU J, ZHANG J N, et al. Magnetic Carbon Nanotube Supported Cu (CoFe2O4/CNTCu) Catalyst: A Sustainable Catalyst for the Synthesis of 3-nitro2arylimidazo [1, 2-a]pyridines [J]. Catal Commun, 2016, 78: 26-32. doi: 10.1016/j.catcom.2016.02.004
  • [14] HAN H, DING G, WU T, et al. Cu and Boron Doped Carbon Nitride forhighly Selective Oxidation of Toluene to Benzaldehyde [J]. Molecules, 2015, 20(7): 12686-12697. doi: 10.3390/molecules200712686
  • [15] XU C, WANG X, CHEN Y, et al. Synergistic Effect Between CuCr Bimetallic Oxides Supported on gC3N4 for the Selective Oxidation of Toluene to Benzaldehyde [J]. Catal Sci Technol, 2019, 9(16): 4441-4450. doi: 10.1039/c9cy00743a
  • [16] HUANG S, ZHAO Y, TANG R. Facile Fabrication of a Cu@gC3N4 Nanocatalyst and Its Application for the Aerobic Oxidations of Alkylaromatics and the Reduction of 4-nitrophenol [J]. RSC Adv, 2016, 6(93): 90887-90896. doi: 10.1039/c6ra18288g
  • [17] SHAHZEYDI A, GHIACI M, FARROKHPOUR H, et al. Facile and Green Synthesis of Copper Nanoparticles Loaded on the Amorphous Carbon Nitride for the Oxidation of Cyclohexane [J]. Chem Eng J, 2019, 370: 1310-1321. doi: 10.1016/j.cej.2019.03.227
  • [18] VERMA P R, PAYRA S, KHAN F, et al. CuBr2@gC3N4 Catalyzed Highly Selective Aerobic Oxidation of Alcohol and Toluene Derivatives [J]. Chemistry Select, 2020, 5: 1950-1955. doi: 10.1002/slct.201904646
  • [19] RAHMAN T, BORAH G, GOGOI P K. Hybrid Composite of CuO with gC3N4 as a Photoactive Catalyst: An Efficient Approach for the Oxidation of Alcohols [J]. J Chem Sci, 2019, 131(1): 4. doi: 10.1007/s12039-018-1581-6
  • [20] ADEKOYA D O, TAHIR M, AMIN N A S. gC3N4/(Cu/TiO2) Nanocomposite for Enhanced Photoreduction of CO2 to CH3OH and HCOOH Under UV/visible Light [J]. J CO2 Util, 2017, 18: 261-274. doi: 10.1016/j.jcou.2017.02.004
  • [21] BAGHERZADE A, NEMATI F, NAHZOMI HT, et al. Experimental and Quantum Chemical Study on Nano-copper Immobilized on Magnetic Graphitic Carbon Nitride Core Shell Particles: A Reusable Heterogeneous Catalyst Toward Reduction of Nitro Arenes [J]. J Mol Struct, 2019, 1185: 38-49. doi: 10.1016/j.molstruc.2019.02.065
  • [22] VERMA A, KUMAR S, CHANG W K, et al. Bi-functional AgCuxO/gC3N4 Hybrid Catalysts for the Reduction of 4-nitrophenol and the Electrochemical Detection of Dopamine [J]. Dalton Trans, 2020, 49(3): 625-637. doi: 10.1039/c9dt04309h
  • [23] BHUYAN B, DEVI M, BORA D, et al. Design of a Photoactive Bimetallic CuAu@gC3N4 Catalyst for Visible Light Driven Hydroxylation of the Benzene Reaction Through CH Activation [J]. Eur J Inorg Chem, 2018, 34: 3849-3858. doi: 10.1002/ejic.201800622
  • [24] ZHANG T, NIE X, YU W, et al. Single Atomic CuN2 Catalytic Sites for Highly Active and Selective Hydroxylation of Benzene to Phenol [J]. iScience, 2019, 22: 97-108. doi: 10.1016/j.isci.2019.11.010
  • [25] DING G, HAN H, JIANG T, et al. Heterogeneous Copper-catalyzed Hydroxylation of Aryl Iodides Under Air Conditions [J]. Chem Commun, 2014, 50(65): 9072-9075. doi: 10.1039/c4cc02267j
  • [26] MUHAMMAD M H, CHEN X L, LIU Y, et al. Recyclable Cu@C3N4catalyzed Hydroxylation of Aryl Boronic Acids in Water Under Visible Light: Synthesis of Phenols Under Ambient Conditions and Room Temperature [J]. ACS Sustain Chem Eng, 2020, 8(7): 2682-2687. doi: 10.1021/acssuschemeng.9b06010
  • [27] YUAN S, CUI P, ZHANG Y, et al. Popping of gC3N4 Mixed with Cupric Nitrate: Facile Synthesis of Cu-based Catalyst for Construction of C—N Bond [J]. Green Energy Environ, 2018, 3(4): 368-374. doi: 10.1016/j.gee.2018.08.003
  • [28] CAO H, SUN Y, WANG F, et al. Design and Preparation of Cu-anchored Polymeric Carbon Nitride (Cu/PCN) Mesoporous Nanotubes: An Efficient Catalyst for Buchwald-hartwig Coupling of Pyrimidines [J]. Micropor Mesopor Mater, 2020, 295: 109972. doi: 10.1016/j.micromeso.2019.109972
  • [29] KHALILI D, REZAEI M, KOOHGARD M. Ligand-free Copper-catalyzed o-arylation of Aryl Halides Using Impregnated Copper Ferrite on Mesoporous Graphitic Carbon Nitride as a Robust and Cheek Magnetic Heterogeneous Catalyst [J]. Micropor Mesopor Mater, 2019, 287: 254-263. doi: 10.1016/j.micromeso.2019.06.007
  • [30] HAN Y, ZHANG M, ZHANG Y Q, et al. Copper Immobilized at a Covalent Organic Framework: An Efficient and Recyclable Heterogeneous Catalyst for the Chan-lam Coupling Reaction of Aryl Boronic Acids and Amines [J]. Green Chem, 2018, 20(21): 4891-4900. doi: 10.1039/c8gc02611d
  • [31] DI J Q, ZHANG M, CHEN Y X, et al. A Copper Anchored on Phosphorus gC3N4 as a Highly Efficient Photocatalyst for Synthesis of Narylpyridin2amines [J]. Green Chem, 2021, 23: 1041-1049. doi: 10.1039/d0gc03400b
  • [32] XU H, WU K, TIAN J, et al. Recyclable Cu/C3N4 Composite Catalysed Homo- and Cross-coupling of Terminal Alkynes Under Mild Conditions [J]. Green Chem, 2018, 20(4): 793-797. doi: 10.1039/c7gc03120c
  • [33] SHARMA A S, SHARMA V S, KAUR H. Graphitic Carbon Nitride Decorated with Cu2O Nanoparticles for the Visible Light Activated Synthesis of Ynones, Aminoindolizines, and Pyrrolo [1, 2-a] Quinoline [J]. ACS Applied Nano Mater, 2020, 3(2): 1191-1202. doi: 10.1021/acsanm.9b01928
  • [34] TASKIN O S, DADASHI-SILAB S, KISKAN B, et al. Highly Efficient and Reusable Microporous Schiff Base Network Polymer as a Heterogeneous Catalyst for Cuaac Click Reaction [J]. Macromol Chem Phys, 2015, 216(16): 1746-1753. doi: 10.1002/macp.201500141
  • [35] PAYRA S, SAHA A, BANERJEE S. On Water Cu@gC3N4 Catalyzed Synthesis of NH-1, 2, 3-triazoles via [2+3] Cycloadditions of Nitroolefins/alkynes and Sodium Azide [J]. ChemCatChem, 2018, 10(23): 5468-5474. doi: 10.1002/cctc.201801524
  • [36] PHATAKE V V, BHANAGE B M.Cu@UgC3N4 Catalyzed Cyclization of ophenylenediamines for the Synthesis of Benzimidazoles by Using CO2 and Dimethylamine Borane as a Hydrogen Source [J]. Catal Lett, 2019, 149(1): 347-359. doi: 10.1007/s10562-018-2608-9
  • [37] KHALILI D, REZAEE M. Impregnated Copper Ferrite on Mesoporous Graphitic Carbon Nitride: An Efficient and Reusable Catalyst for Promoting Ligand-free Click Synthesis of Diverse 1, 2, 3-triazoles and Tetrazoles [J]. Appl Organomet.Chem, 2019, 33(11): e5219. doi: 10.1002/aoc.5219
  • [38] VERMA F, SHUKLA P, BHARDIYA S R, et al. Photocatalytic C(sp3)H Activation Towards Alpha-methylenation of Ketones Using Meoh as 1C Source Steering Reagent [J]. Adv Synth Catal, 2019, 361(6): 1247-1252. doi: 10.1002/adsc.201801431
  • [39] KARKEABADI M, NEMATI F, ELHAMPOUR A, et al. Cu2O Modified gC3N4 as an Effective Catalyst for the Synthesis of Propargylamines: Experimental, Quantum Mechanical Mechanistic and Kinetic Study [J]. React Kinet Mech Catal, 2019, 126(1): 265-282. doi: 10.1007/s11144-018-1491-0