期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

基于羽流污染的霍尔推进器电荷交换碰撞效应分析

  • 1.华北电力大学 电气与电子工程学院,北京 102206;2.北京应用物理与计算数学研究所,北京 100094
  • DOI: 10.13763/j.cnki.jhebnu.nse.202102015

Analysis on Collision Effects Induced by CEX in Hall Thruster Based on Plume Pollution

摘要/Abstract

摘要:

推进器喷射过程中在尾部形成羽流区,羽流区域发生电荷交换碰撞,产生的电荷交换(charge exchange, CEX)离子与航天器表面相互作用,对在轨运行的航天器产生羽流污染效应.基于 SPT100霍尔推进器建立了完整 的航天器三维仿真模型,在满足准中性假设的条件下,采用PIC-MCC方法,通过模拟和计算航天器表面电势分布、 电荷交换碰撞后的 CEX离子电荷密度分布以及束流离子电荷密度分布规律,分析了 CEX 离子对航天器表面充放 电的影响以及造成的羽流污染影响区域范围,为霍尔推进器系统的进一步优化设计提供理论参考.

Abstract:

In the plume area formed in the tail during the ejection of the thruster, the charge exchange (CEX) ions generated after the charge exchange collision interact with the surface of the spacecraft. During this process, it can easily lead to plume pollution effects on the spacecraft in orbit. For the Hall thruster, a complete three-dimensional model of the spacecraft is established based on the SPT100 thruster. Based on the quasi-neutral assumption, the PIC-MCC method is used for the simulation. The calculation results give the surface potential distribution of the spacecraft and the charge exchange collision including CEX ion distribution and beam ion distribution. The result shows the impact of CEX ions on spacecraft surface charging and discharging as well as the range of the plume pollution influence area. It is useful for the further optimization of the Hall thruster system.

参考文献 16

  • [1] 于达仁, 乔磊, 蒋文嘉, 等. 中国电推进技术发展及展望 [J] . 推进技术, 2020, 41(1):1-12. doi:10. 13675/j. cnki. tjjs. 190140 YU Daren, QIAO Lei, JIANG Wenjia, et al. Development and Prospect of Electric Propulsion Technology in China [J] . Journal of Propulsion Technology, 2020, 41(1):1-12.
  • [2] 张天平, 唐福俊, 田华兵, 等. 电推进航天器的特殊环境及其影响 [J] . 航天器环境工程, 2007(2):88-94, 61. ZHANG Tianping, TANG Fujun, TIAN Huabing, et al. The Special Environment of a Spacecraft with Electric Propulsion and Its Effects [J] . Spacecraft Environment Engineering, 2007(2):88-94, 61.
  • [3] 冯娜, 李得天, 杨生胜, 等. 电推进等离子体对航天器表面带电影响的理论研究 [J] . 高电压技术, 2016, 42(5):1449-1454. doi:10. 13336/j. 1003-6520. hve. 20160412008 FENG Na, LI Detian, YANG Shengsheng, et al. Theory Study of Ion Thruster Plume to Spacecraft Surface Charging [J] . High Voltage Engineering, 2016, 42(5):1449-1454.
  • [4] 龙建飞, 孙明明, 张天平, 等. 霍尔推力器热模型研究 [J] . 强激光与粒子束, 2014, 26(12):124002-1-6. LONG Jianfei, SUN Mingming, ZHANG Tianping, et al. Thermal Model of Hall Thruster [J] . High Power Laser and Particle Beams, 2014,26(2):124002-1-6.
  • [5] BONDAR E A, SCHWEIGERT V A, MARKELOV G N, et al. Assessment of CEX Ion Backflow of SPT-100 Thruster [C] //Aip Conference. Arlington:American Institute of Physics, 2002:278-285, 585.
  • [6] 邱佩. 三维全粒子羽流数值模拟研究 [D] . 哈尔滨:哈尔滨工业大学, 2018. QIU Pei. Research on Three Dimension Full Particle Numerical Simulation of Plume [D] . Harbin:Harbin Institute of Technology, 2018.
  • [7] FRANCESCO T, SAVINO L, MARIO C, et al. Stationary Plasma Thruster Simulation [J] . Computer Physics Communications, 2004, 164(1-3):160-170.
  • [8] 吴楠, 毛威, 沈岩, 等. 基于半经验模型的霍尔推力器壁面腐蚀形貌预测方法研究 [J] . 推进技术, 2019, 40(11):2626-2632. doi:10. 13675/j. cnki. tjjs. 180604 WU Nan, MAO Wei, SHEN Yan, et al. Wall Corrosion Morphology Prediction of Hall Thrusters Using Semi-empirical Method [J] . Journal of Propulsion Technology, 2019, 40(11):2626-2632.
  • [9] MACDONALD-TENENBAUM N, PRATT Q, NAKLES M, et al. Background Pressure Effects on Ion Velocity Distributions in an SPT-100 Hall Thruster [J] . Journal of Propulsion and Power, 2019, 35(2):1-10. doi:10. 2514/1. b37133
  • [10] KRONHAUS I, KAPULKIN A, GUELMAN M, et al. Investigation of Two Discharge Configurations in the CAMILA Hall Thruster by the Particle-in-cell Method [J] . PLasma Sources Science and Technology, 2012, 21(035005):1-11.
  • [11] JASON D F,WALKER J A,WALKER M,et al. Electrical Facility Effects on Hall Thruster Cathode Coupling:Performance and Plume Properties [J] . Journal of Propulsion and Power, 2016, 32(1):251-264. doi:10. 2514/1. b35683
  • [12] 刘辉, 罗晓明, 温正,等. GEO卫星霍尔推力器羽流防护结构混合PIC模拟 [J] . 中国空间科学技术, 2016, 36(1):63-69. LIU Hui, LUO Xiaoming, WEN Zheng, et al. Hybrid-pic Simulation of Hall Thruster Plume Shield on GEO Satellites [J] . Chinese Space and Technology, 2016, 36(1):63-69.
  • [13] SHU T L. 航天器带电原理——航天器与空间等离子体的相互作用 [M] . 北京:科学出版社, 2015. SHU T L. Fundamentals of Spacecraft Charging:Spacecraft Interactions with Space Plasmas [M] . Beijing:Science Press, 2015.
  • [14] NUNO J M L. Modelling of Plasma Thruster Plumes for Spacecraft Plume-impingement Analysis [D] . Lisboa:Universide Tecnica de Lisboa, 2010.
  • [15] 杨龙, 王强, 阚明先, 等. 微放电等离子体多负辉区结构融合过程数值模拟研究 [J] . 强激光与粒子束, 2017, 29(8):085002-1-7. YANG Long, WANG Qiang, KAN Mingxian, et al. Numerical Simulation of Multiple Negative Glow Regions in Micro Discharge Plasma [J] . High Power Laser and Particle Beams, 2017, 29(8) :085002-1-7.
  • [16] MILLER J S, PULLINS S H, LEVANDIER D J, et al. Xenon Charge Exchange Cross Sections for Electrostatic Thruster Models [J] . Journal of Applied Physics, 2002, 91:984-991. doi:10. 1063/1. 1426246