期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

锑烯对O,OH,O2,OOH的吸附特性及氧还原反应的密度泛函理论研究

  • 华北电力大学 电气与电子工程学院, 北京 102206
  • DOI: 10.13763/j.cnki.jhebnu.nse.2020.02.004

Study on the Adsorption Characteristics of O,OH,O2,OOH and Oxygen Reduction Reaction on Antimonene Using Density Functional Theory

摘要/Abstract

摘要:

研究了锑烯对燃料电池阴极氧还原反应中间物O,OH,O2,OOH的吸附特性,通过对吸附能、吸附距离、键长及能带、态密度、电荷转移的分析,比较了锑烯对各中间物的吸附作用,模拟了氧还原反应过程,给出了各步反应自由能变化的趋势图.结果表明:O,OH,O2,OOH在锑烯上最稳定吸附位的吸附能分别为3.81,2.43,1.59,1.04eV;锑烯上的氧还原反应过程存在四电子途径和二电子途径,且自由能逐渐降低,有自发进行的趋势;锑烯与OOH存在较强的相互作用,这对氧还原反应第一步OOH的吸附及第二步O—O键的断开是有利的,对OH适度的吸附作用也不会限制OH与H结合生成H2O分子进而脱附的过程.以上结果表明,锑烯具有催化燃料电池阴极氧还原反应的潜力,这为实验上进一步探索锑烯作为氧还原反应电催化材料提供了理论参考.

Abstract:

The adsorption characteristics of various oxygen reduction reaction intermediates (O,OH,O2 and OOH) on pristine antimonene have been studied.On analysis of adsorption energy,adsorption distance,bond length,energy band,density of states and charge transfer,the adsorption of various oxygen reduction reaction intermediates on pristine antimonene are compared.The oxygen reduction reaction paths are simulated,and the free energy changes in each step of oxygen reduction reaction are given.The adsorption energies of O,OH,O2 and OOH at the most stable adsorption sites on antimonene are 3.81,2.43,1.59,1.04eV,respectively.Oxygen reduction reaction has both four-electron and two-electron paths on pristine antimonene.The free energy decreases gradually,which indicates that the reaction can occur spontaneously.There is a strong interaction between pristine antimonene and OOH,which is conducive to the occurrence of the first and second steps of oxygen reduction reaction.In addition,moderate adsorption of OH does not restrict the process of OH binding with H to form H2O.The above results show that antimonene has the ability to catalyze the oxygen reduction reaction of fuel cell cathode,which provides theoretical guides for further experimental exploration of antimonene system as oxygen reduction reaction electrocatalyst materials.

参考文献 34

  • [1] STEELE B C H,HEINZEL A.Materials for Fuel-cell Technologies[J].Nature,2001,414(6861):345-352.doi:10.1038/35104620
  • [2] ZHANG S,SHAO Y Y,LI X H,et al.Low-cost and Durable Catalyst Support for Fuel Cells:Graphite Submicronparticles[J].Power Sources,2010,195(2):457-460.doi:10.1016/j.jpowsour.2009.08.012
  • [3] GASTEIGER H A,MARKOVIC N M.Just a Dream-or Future Reality[J].Science,2009,324(5923):48-49.doi:10.1126/science.1172083
  • [4] YU X W,YE S Y.Recent Advances in Activity and Durability Enhancement of Pt/C Catalytic Cathode in PEMFC,Part II:Degradation Mechanism and Durability Enhancement of Carbon Supported Platinum Catalyst[J].J Power Sources,2007,172(1):133-144.doi:10.1016/j.jpowsour.2007.07.049
  • [5] NEERGAT M,SHUKLA A K,GANDHI K S.Platinum-based Alloys as Oxygen-reduction Catalysts for Solid-polymer-electrolyte Direct Methanol Fuel Cells[J].J Appl Electrochem,2001,31(4):373-378.doi:10.1023/A:1017575918643
  • [6] LIU X,LI L,MENG C G,et al.Palladium Nanoparticles/defective Graphene Composites as Oxygen Reduction Electrocatalysts:A First-principles Study[J].J Phys Chem C,2012,116(4):2710-2719.doi:10.1021/jp2096983
  • [7] SHAOY Y,LIU W J,WANG Y,et al.Novel Catalyst Support Materials for PEM Fuel Cells:Current Status and Future Prospects[J].J Mater Chem,2008,19(1):46-59.doi:10.1039/B808370C
  • [8] ZHAO Y,YANG L J,CHEN S,et al.Can Boron and Nitrogen Codoping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes[J].J Chem Soc,2013,135(4):1201-1204.doi:10.1021/ja310566z
  • [9] QU L T,LIU Y,BAEK J B,et al.Nitrogen-doped Graphene as Efficient Metal-free Electrocatalyst for Oxygen Reduction in Fuel Cells[J].ACS Nano,2010,4(3):1321.
  • [10] SHENG Z H,GAO H L,BAO W J,et al.Synthesis of Boron Doped Graphene for Oxygen Reduction Reaction in Fuel Cells[J].J Mater Chem,2012,22(2):390-395.doi:10.1039/c1jm14694g
  • [11] LU Z S,LI S,LIU C,et al.Sulfur Doped Graphene as a Promising Metal-free Electrocatalyst for Oxygen Reduction Reaction:A DFT-D Study[J].RSC Adv,2017,7(33):20398-20405.doi:10.1039/C7ra00632b
  • [12] SUN J P,ZHOU K L,LIANG X D.Density Functional Study on the Adsorption Characteristics of O,O2,OH,and OOH of B-,P-doped,and B,P Codoped Graphenes[J].Acta Phys Sin,2016,65(1):018201.doi:10.7498/aps.65.018201
  • [13] KHAN A,DOWN M P,SMITH G C,et al.Surfactant-exfoliated 2D Hexagonal Boron Nitride (2D-Hbn):Role of Surfactant Upon the Electrochemical Reduction of Oxygen and Capacitance Applications[J].J Mater Chem A,2017,5(8):4103-4113.doi:10.1039/C6TA09999H
  • [14] ELUMALAI G,NOGUCHI H,UOSAKI K.Electrocatalytic Activity of Various Types of h-BN for the Oxygen Reduction Reaction[J].Phys Chem Chem Phys,2014,16(27):13755-13761.doi:10.1039/C4CP00402G
  • [15] BACK S,SIAHROSTAMI S.Noble Metal Supported Hexagonal Boron Nitride for the Oxygen Reduction Reaction:A DFT Study[J].Nano Adv,2019,1(1):132-139.doi:10.1039/C8na00059j
  • [16] WEN X,WANG Y C,ZHAO J X.Negatively Charged Boron Nitride Nanosheets as a Potential Metal-free Electrocatalyst for the Oxygen Reduction Reaction:A Computational Study[J].J New Chem,2018,42(5):12838-12844.doi:10.1039/C8NJ01228H
  • [17] DENG C,HE R,WEN D,et al.Theoretical Study on the Origin of Activity for Oxygen Reduction Reaction of Metal Doped Two-dimensional Boron Nitride Materials[J].Phys Chem Chem Phys,2018,20(15):10240-10246.doi:10.1039/C8CP00838H
  • [18] SAMUEL-REICH E.Phosphorene Excites Materials Scientists[J].Nature,2014,506(7486):11-19.doi:10.1038/506019a
  • [19] LIU H,NEAL A T,ZHU Z,et al.Phosphorene:An Unexplored 2D Semiconductor with a High Hole Mobility[J].ACS Nano,2014,8(4):4033-4041.doi:10.1021/nn501226z
  • [20] PANG J B,BACHMATIUK A,YIN Y,et al.Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices[J].Adv Energy Mater,2017,8(8):1702093.doi:10.1002/aenm.201702093
  • [21] RAHMAN M Z,KWONG P,DAVEY K,et al.2D Phosphorene as a Water Splitting Photocatalyst:A Review of Fundamentals to Applications[J].Energy Environ Sci,2016,9(4):1513-1514.doi:10.1039/c6ee90016j
  • [22] HALDAR S,MUKHERJEE S,AHMED F,et al.A First Principles Study of Hydrogen Storage Inlithium Decorated Defective Phosphorene[J].Int J Hydrogen Energy,2017,42(36):23018-23027.doi:10.1016/j.ijhydene.2017.07.143
  • [23] WANG G,PANDEY R,KARNA S.Atomically Thin Group V Elemental Films:Theoretical Investigations of Antimonene Allotropes[J].ACS Appl Mater Interfaces,2015,7(21):11490-11496.doi:10.1021/acsami.5b02441
  • [24] LI T T,HE C,ZHANG W X.Structural Complexity and Wide Application of Two-dimensional S/O Type Antimonene[J].Appl Surf Sci,2018,441:77-84.doi:10.1016/j.apsusc.2018.01.218
  • [25] CAMPI D,BERNASCONI M,BENEDEK G.Phonons and Electron-phonon Interaction at the Sb (111) Surface[J].Phys Rev B,2012,86(7):075446.doi:10.1103/PhysRevB.86.075446
  • [26] WU X,SHAO Y,LIU H,et al.Epitaxial Growth and Air-stability of Monolayer Antimonene on PdTe2[J].Adv Mater,2017,29(11):1605407.doi:10.1002/adma.201605407
  • [27] JI J P,SONG X F,LIU J Z,et al.Two-dimensional Antimonene Single Crystals Grown by van der Waals Epitaxy[J].Nat Commun,2016,7:13352.doi:10.1038/ncomms13352
  • [28] MAO Y H,ZHANG L F,WANG H L,et al.Epitaxial Growth of Highly Strained Antimonene on Ag(111)[J].Front Phys,2018,13(3):61-68.
  • [29] AKTVRK O U,AKTVRK E,CIRACI S.Effects of Adatoms and Physisorbed Molecules on the Physical Properties of Antimonene[J].Phys Rev B,2016,93(3):035450.doi:10.1103/PhysRevB.93.035450
  • [30] NORSKOV J K,ROSSMEISL J,LOGADOTTIR A,et al.Origin of the Overpotential for Oxygen Reduction at a Fuel-cell Cathode[J].J Phys Chem B,2004,108(46):17886-17892.doi:10.1021/jp047349j
  • [31] LI M T,ZHANG L P,XU Q,et al.N-doped Graphene as Catalysts for Oxygen Reduction and Oxygen Evolution Reactions:Theoretical Considerations[J].J Catal,2014,314:66-72.doi:10.1016/j.jcat.2014.03.011
  • [32] LIM D H,WILCOX J.Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-supported Pt Nanoparticles from First-principles[J].J Phys Chem C,2012,116(5):3653-3660.doi:10.1021/jp210796e
  • [33] ATKINS P W,JULIO D,JAMES K.Atkins' Physical Chemistry[M].6th ed.Oxford:Oxford University Press,1998,485:925-927,942.
  • [34] ARES P,AGUILAR-GALINDO F,RODRÍGUEZ-SAN-MIGUEL D,et al.Mechanical Isolation of Highly Stable Antimonene Under Ambient Conditions[J].Adv Mater,2016,28(30):6332-6336.doi:10.1002/adma.201602128