期刊信息

- 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
- 主办: 河北师范大学
- ISSN: 1000-5854
- CN: 13-1061/N
- 中国科技核心期刊
- 中国期刊方阵入选期刊
- 中国高校优秀科技期刊
- 华北优秀期刊
- 河北省优秀科技期刊
基于Kolmogorov熵的新三维混沌系统动力学分析
-
1. 甘肃林业职业技术学院 信息工程学院, 甘肃 天水 741020;
2. 兰州交通大学 数理学院, 甘肃 兰州 730070;
3. 兰州交通大学 交通运输学院, 甘肃 兰州 730070;
4. 新疆财经大学 应用数学学院, 新疆 乌鲁木齐 830012 -
DOI:
10.13763/j.cnki.jhebnu.nse.2018.02.004
Dynamical Analysis of a New Three-dimensional Chaotic Systems Based on the Kolmogorov Theory
摘要/Abstract
提出了一个利用正弦纠缠函数方法构造的新三维混沌系统,基本的原理是纠缠2个或多个稳定的线性子系统,形成人为的混沌系统.对该系统耗散性、吸引子的存在性、平衡点的稳定性、Hopf分岔特性进行了研究,同时利用Kolmogorov熵的理论,通过计算机辅助软件,分析了不同参数对系统的影响,根据不同长度的参数空间,计算得到了与理论一致的正的常量Kolmogorov熵,证明了系统的混沌状态.
A new chaotic system was proposed by sine entanglement function.The basic principle is to entangle two or multiple stable linear subsystems by entanglement functions to form an artificial chaotic system such that each of them evolves in a chaotic manner.The dynamics,the existence and stability of Hopf bifurcation and the dynamic characteristics of the system was discussed.The effects of different parameter variation on dynamic behavior of the system were investigated through Kolmogorov entropy theory and numerical simulations.And we computed the Kolmogorov entropy under the different value of the phase space's length.The results show that the Kolmogorov entropy of the system is a positive constant and the state of the system is chaos.
关键词
参考文献 16
- [1] LORENZ E N.Deterministic Nonperiodic Flow[J].Journal of the Atmospheric Sciences,1963,20(2):130-141.
- [2] PECORA L M,CARROLL T L.Synchronization in Chaotic Systems[J].Phys Rev Lett,1990,64(8):821-827.doi:10.1103/PhysRevLett.64.821
- [3] DIAS F S,MELLO L F,ZHANG J G.Nonlinear Analysis in a Lorenz-like System[J].Nonlinear Analysis:Real World Applications,2010,11(5):3491-3500.doi:10.1016/j.nonrwa.2009.12.010
- [4] ELWAKIL A S,OZOGUZ S.Multiscroll Chaotic Oscillators:The Nonautonomous Approach[J].Circuits & Systems Ⅱ Express Briefs IEEE Transactions on,2006,53(9):862-866.doi:10.1109/TCSⅡ.2006.880032
- [5] LYU J,HAN F,YU X,et al.Generating 3-D Multi-scroll Chaotic Attractors:A Hysteresis Series Switching Method[J].Automatica,2004,40(10):1677-1687.doi:10.1016/j.automatica.2004.06.001
- [6] AHMAD W M,SPROTT J C.Chaos in Fractional-order Autonomous Nonlinear Systems[J].Chaos Solitons & Fractals,2003,16(2):339-351.doi:10.1016/S0960-0779(02)00438-1
- [7] YALÇIN M E,ÖZOGUZ S.N-scroll Chaotic Attractors from a First-order Time-delay Differential Equation[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2007,17(3):033112.doi:10.1063/1.2768403
- [8] SPROTT J C,CHLOUVERAKIS K E.Labyrinth Chaos[J].International Journal of Bifurcation and Chaos,2007,17(6):2097-2108.doi:10.1142/S0218127407018245
- [9] ZHANG H,LIU X,SHEN X,et al.A Family of Novel Chaotic and Hyperchaotic Attractors from Delay Differential Equation[J].Dynam Cont Dis Ser B,2012,19(3):411-430.
- [10] ZHANG H,LIU X,SHEN X,et al.Chaos Entanglement:A New Approach to Generate Chaos[J].International Journal of Bifurcation and Chaos,2013,23(5):1330014.doi:10.1142/S0218127413300140
- [11] 杜文举.一个新混沌系统的Hopf分岔分析及其电路实现[J].四川大学学报(自然科学版),2013,50(5):1025-1031.doi:10.3969/j.issn.0490-6756.2013.05.022
- [12] 杨敏,俞建宁,张建刚,等.一个新混沌纠缠系统的构造及动力学分析[J].河北师范大学学报(自然科学版),2014,38(3):245-249.doi:10.11826/j.issn.1000-5854.2014.03.007
- [13] SHAW R.Strange Attractors,Chaotic Behavior,and Information Flow[J].Zeitschrift FVR Naturforschung A,1981,36(1):80-112.doi:10.1515/zna-1981-0115
- [14] KUZNETSOV Y A.Elements of Applied Bifurcation Theory[M].Berlin:Springer-verlag,1995:715-730.
- [15] SCHOUTEN J C,TAKENS F,BLEEK van den C M.Maximum-likelihood Estimation of the Entropy of an Attractor[J].Phys Rev E,1994,49(1):126.doi:10.1103/PhysRevE.49.126
- [16] GRASSBERGER P,PROCACCIA I.Estimation of the Kolmogorov Entropy from a Chaotic Signal[J].Phys Rev A,1983,28(4):2591-2593.doi:10.1103/PhysRevA.28.2591