期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

电场、磁场对二维无序系统电子输运的影响

  • 1. 河北科技大学 理学院, 河北 石家庄 050018;
    2. 石家庄科技信息职业学院 机电及汽车工程学院, 河北 石家庄 050000
  • DOI: 10.13763/j.cnki.jhebnu.nse.2017.02.007

Influence of Electric Field and Magnetic Field on Transport Properties of Two-dimensional Disordered Electron System

摘要/Abstract

摘要:

研究了电场、磁场作用下,二维无序杂质系统电导的物理性质.电场的作用削弱了系统电导的"台阶"量子效应,随着中间散射区域尺寸的增大,系统电导随电子能量的变化震荡加剧;系统电导随着磁场的变化表现出周期性震荡行为,其震荡的剧烈程度随外部电压的增大而变小;受杂质散射的影响,系统电导随无序杂质质量浓度的增大而减小.

Abstract:

On the action of electric field and magnetic field, the phenomenon of quantized conductance in a two-dimensional system with disordered impurities is investigated.The electric field decreases the conductance and reduced its "step" quantum effect.The increase of the size of the intermediate scattering area intensifies the oscillation of the conductance varying with the electron energy.The conductance exhibits periodic oscillation with the external magnetic field, and the intensity of the oscillation becomes smaller with the increase of the electric field. With the increase of the impurity concentration, the conductance decreases.

参考文献 17

  • [1] MUHAMMAD I.Electron Transport Through a Diatomic Molecule[J].Phys B:Condensed Matter,2014,446:1-5.doi:10.1016/j.physb.2014.04.014
  • [2] 谢月娥,颜晓红,陈元平.量子点超晶格中的电子输运[J].湘潭大学自然科学学报,2005,27(2):84-88.doi:10.3969/j.issn.1000-5900.2005.02.019
  • [3] 白志明,马强.多散射杂质对二维电子系统输运特性的影响[J].河北科技大学学报,2011(1):1-7.doi:10.7535/hbkd.2011yx01001
  • [4] ANDO T.Edge States in Quantum Wires in High Magnetic Fields[J].Phys Rev B,1990,42(9):5626-5634.doi:10.1103/PhysRevB.42.5626
  • [5] HANG X,PING S.Fluctuation-induced Tunneling Conduction Through Nano-constrictions[J].Phys Rev B:Condensed Matter and Materials Physics,2009,79(16):165419.doi:10.1103/PhysRevB.79.165419
  • [6] XIA J B. Quantum Waveguide Theory for Microscopic Structures[J].Phys Rev B:Condensed Matter and Materials Physics,1992,45(7):3593-3599.doi:10.1103/PhysRevB.45.3593
  • [7] XIA J B,SHENG W D.On the Soft Wall Guiding Potentials in Realistic Quantum Waveguides[J].J Appl Phys,1996,79(10):7780-7784.doi: 10.1063/1.362384
  • [8] 夏建白.现代半导体物理[M]. 北京:北京大学出版社,2000.
  • [9] DENG WENJI,LIU YOUYAN,HUANG XIUQING.On the Localization of Electronic States in One-dimensional Quasilattices[J].Acta Physica Sinica,1992,1(2):113-122.doi:10.1088/1004-423X/1/2/005
  • [10] ANDO T,UEDA M.Transfer-energy-dependent Escape Rate of Electrons Through a Small-capacitance Tunnel Junction[J].Phys Rev B,Condensed Matter,1994,50(11):7820-7832.doi:10.1103/PhysRevB.50.7820
  • [11] 刘磊.石墨烯费米速度调制结构中量子输运性质的研究[D].石家庄:河北师范大学,2014.
  • [12] KOLASISKI K,SZAFRAN B,HACKENS B.Multitip Scanning Gate Microscopy for Ballistic Transport Studies in Systems with a Two-dimensional Electron Gas[J]. Phys Rev B,2015,91(20):5314.doi:10.1103/PhysRevB.91.205314
  • [13] WEES VAN B J,KOUWENHOVEN L P,HOUTEN VAN H,et al.Quantized Conductance of Magnetoelectric Subbands in Ballistic Point Contacts[J].Phys Rev B,Condensed Matter,1988,38(5):3625-3627.doi:10.1103/PhysRevB.38.3625
  • [14] ANDO T. Quantum Point Contacts in Magnetic Fields[J].Phys Rev B:Condensed Matter,1991,44(15):8017-8027.doi:10.1103/PhysRevB.44.8017
  • [15] SHOKRI A A,MOSAVAT A H. Electronic Transport of Graphene Nanoribbons Within Recursive Green's Function[J]. Superlattices & Microstructures,2012,51(1):523-532.doi:10.1016/j.spmi.2012.01.016
  • [16] BIHUN R I,STASYUK Z V,BALITSKII O A.Crossover from Quantum to Classical Electron Transport in Ultrathin Metal Films[J].Phys B:Condensed Matter,2016,487:73-77.doi:10.1016/j.physb.2016.02.003
  • [17] MOGULKOC A,MODARRESI M,KANDEMIR B S,et al.The Role of Electron-phonon Interaction on the Transport Properties of Graphene Based Nano-devices[J].Phys B:Condensed Matter,2014,446:85-91.doi:10.1016/j.physb.2014.04.034