期刊信息

  • 刊名: 河北师范大学学报(自然科学版)Journal of Hebei Normal University (Natural Science)
  • 主办: 河北师范大学
  • ISSN: 1000-5854
  • CN: 13-1061/N
  • 中国科技核心期刊
  • 中国期刊方阵入选期刊
  • 中国高校优秀科技期刊
  • 华北优秀期刊
  • 河北省优秀科技期刊

原子链耦合石墨烯电子输运性质的第一性原理计算

  • 1. 宜宾学院 化学与化工学院, 四川 宜宾 644000;
    2. 宜宾学院 物理与电子工程学院, 四川 宜宾 644000
  • DOI: 10.13763/j.cnki.jhebnu.nse.2017.01.007

Calculation on Electron Transport Properties of Atomic Chain CouplingGraphene from First Principles

摘要/Abstract

摘要:

基于密度泛函理论,运用非平衡格林函数的方法,对B直线原子链、N直线原子链、Si直线原子链耦合石墨烯纳米带构成分子器件的电子输运特性进行了第一性原理模拟,计算得到3种不同构型分子器件的平衡电导,分别为1.16 G0,0.79 G0,1.16 G0.电荷布局计算结果表明,原子链耦合石墨烯改变了原子链原子的局域态密度,为电子的传输提供了更多的隧穿模式.在0~1.2 V时,对于graphene+5B,graphene+5Si分子器件的电流随着电压的增大而增大,其I-V关系近似为线性关系,表现出金属导电特性;而对于graphene+5N分别在0~0.7 V,0.9~1.2 V时,I-V关系近似为线性,但在0.7~0.8 V时却存在负微分电阻现象.

Abstract:

Electron transport properties of boron linear atomic chains, nitrogen linear atomic chains, silicon linear atomic chains, coupling with graphene nanoribbons,are simulated with a combination of density functional theory and non-equilibrium green's function method from first principles. The equilibrium conductance of three kinds of molecular devices is 1.16 G0, 0.79 G0,1.16 G0, respectively. The results of calculation on Mulliken population show that atomic chains coupling graphene nanoribbons change the local density of states of the atoms in the chain, and it provides more tunneling mode for electron transport. In the voltage range of 0~1.2 V,the current increases with the voltage increasing for graphene+5B and graphene+5Si molecular devices,the relationship of I-V is approximately to linear. That shows these two kinds of molecular devices have metal conductive properties.In the voltage range of 0~0.7 V and 0.9~1.2 V,the relationship of I-V approximate to linear,but in the range of 0.7~0.8 V,there is a negative differential resistance phenomenon for graphene+5N molecular devices.

参考文献 32

  • [1] NETO A H C,GUINEA F,PERES N M R,et al.The Electronic Properties of Graphene[J].Reviews of Modern Physics,2009,81(1):109.doi:10.1103/RevModPhys.81.109
  • [2] NAKAdA K,FUJITA M,ESSELHAUS dr G,et al. Edge State in Graphene Ribbons:Nanometer Size Effect and Edge Shape Dependence[J].Phys Rev B,1996,54(24):17954.doi:10.1103/PhysRevB.54.17954
  • [3] BREY L,Fertig H A.Electronic States of Graphene Nanoribbons Studied with the Dirac Equation[J].Phys Rev B,2006,73(23):235411.doi:10.1103/PhysRevB.73.235411
  • [4] ZHANG Huaixiu,WANG Z F,LUO Tao,et al.Analytical Study of Electronic Structure in Armchair Graphene Nanoribbons[J]. Phys Rev B,2007,75(16):165414.doi:10.1103/PhysRevB.75.165414
  • [5] BREY L,FERTIG H A. Elementary Electronic Excitations in Graphene Nanoribbons[J].Phys Rev B,2007,75(12):125434.doi:10.1103/PhysRevB.75.125434
  • [6] PISANI L,CHAN J A,MONTANARI B,et al. Electronic Structure and Magnetic Properties of Graphitic Ribbons[J]. Phys Rev B, 2007,75(6):064418.doi:10.1103/PhysRevB.75.064418
  • [7] VAKIL A,ENGHETA N.Transformation Optics Using Graphene[J].Science,2011,332(6035):1291-1294.doi:10.1126/science.1202691
  • [8] MILLER J R,OUTLAW R A,HOLLOWAY B C.Graphene Double-layer Capacitor with ac Line-filtering Performance[J].Science, 2010,329(5999):1637-1639.doi:10.1126/science.1194372
  • [9] YAN Qimin,HUANG Bing,YU Jie,et al. Intrinsic Current-voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping[J]. Nano Lett,2007,7(6):1469-1473.doi:10.1021/nl070133j
  • [10] SCHWIERZ F. Electronics:Industry-compatible Graphene Transistors[J]. Nature,2011,472(7341):41-42.doi:10.1038/472041a
  • [11] 林琦,陈余行,吴建宝,等.N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响[J]. 物理学报,2011,60(9):554-559. doi:10.7498/aps.60.097103
  • [12] dENG X Q,ZHANG Z H,TANG G P,et al. Rectifying Behaviors Induced by BN-doping in Trigonal Graphene with Zigzag Edges[J]. Appl Phys Lett,2012,100(6):063107.doi:10.1063/1.3681779
  • [13] dENG Xiaoqing,TANG Guiping,GUO Chao. Tuning the Electronic Transport Properties for a Trigonal Graphene Flake[J].Phys Lett A,2012,376(23):1839-1844.doi:10.1016/j.physleta.2012.04.021
  • [14] HE Jun,CHEN Keqiu,FAN Zhiqiang,et al. Transition from Insulator to Metal Induced by Hybridized Connection of Graphene and Boron Nitride Nanoribbons[J]. Appl Phys Lett,2010,97(19):193305.doi:10.1063/1.3515921
  • [15] 邓小清,杨昌虎,张华林.B/N掺杂对于石墨烯纳米片电子输运的影响[J]. 物理学报,2013,62(18):186102-186102.doi:10.7498/aps.62.186102
  • [16] 陈莹莹,宓一鸣.基于第一性原理对硅取代,掺杂锯齿形石墨烯纳米带的电子结构及输运性质的研究[J]. 人工晶体学报,2015,44(3):808-815.
  • [17] SMIT R H M,UNTIEdT C,YANSON A I,et al. Common Origin for Surface Reconstruction and the Formation of Chains of Metal Atoms[J]. Phys Rev Lett,2001,87(26):266102.doi:10.1103/PhysRevLett.87.266102
  • [18] BAHN S R,JACOBSEN K W.Chain Formation of Metal Atoms[J].Phys Rev Lett,2001,87(26):266101.doi:10.1103/PhysRevLett.87.266101
  • [19] SENGER R T,TONGAY S,dURGUN E,et al.Atomic Chains of Group-IV Elements and III-V and II-VI Binary Compounds Studied by a First-principles Pseudopotential Method[J].Phys Rev B,2005,72(7):075419.doi:10.1103/PhysRevB.72.075419
  • [20] TONGAY S,SENGER R T,dAG S,et al. Abinitio Electron Transport Calculations of Carbon Based String Structures[J].Phys Rev Lett,2004,93(13):136404.doi:10.1103/PhysRevLett.93.136404
  • [21] ZHANG Tian,CHENG Yan,CHEN Xiangrong.Abinitio Calculations of Quantum Transport of Au-GaN-Au Nanoscale Junctions[J]. RSC Advances,2014,94(4):51838-51844.doi:10.1039/C4RA09132A
  • [22] LIU Futi,CHENG Yan,YANG Fubin,et al.Effects of Contact Geometry on the Transport Properties of a Silicon Atom[J].Chin Phys Lett,2013,30(10):107303.doi:10.1088/0256-307X/30/10/107303
  • [23] LIU Futi,CHENG Yan,YANG Fubin,et al.Quantum Conductance Oscillation in Linear Monatomic Silicon Chains[J].Phys E:Low-dimensional Systems and Nanostructures,2014,56:96-101.doi:10.1016/j.physe.2013.08.029
  • [24] 柳福提,程艳,陈向荣,等.Au-Si60-Au分子结电子输运性质的理论计算[J].物理学报,2014,63(17):177304-177304.doi:10.7498/aps.63.177304
  • [25] KWAPI.SKI T. Phase-dependent Electron Transport Through a Auantum Wire on a Surface[J].J Phys:Condensed Matter,2012, 24(5):055302.doi:10.1088/0953-8984/24/5/055302
  • [26] YANG Fubin,CHENG Yan,LIU Futi,et al. Spin-dependent Transport Through a Quantum Wire on a Graphene Surface[J]. Appl Phys Lett,2013,102(1):011911.doi:10.1063/1.4773913
  • [27] YANG Fubin,CHENG Yan,LIU Futi,et al.Spin-dependent Fano Resonance in an Impurity-doped Graphene Coupled to Ferromagnetic Leads[J].Appl Phys Lett,2013,103(3):033513.doi:10.1063/1.4815885
  • [28] LI Haidong, ZHENG Yisong. Contact Conductance Between Graphene and Quantum Wires[J].Phys Lett A,2009,373(5):575-582. doi:10.1016/j.physleta.2008.12.015
  • [29] BÜTTIKER M,IMRY Y,LANdAUER R,et al.Generalized Many-channel Conductance Formula with Application to Small Rings[J]. Phys Rev B,1985,31(10):6207.doi:10.1103/PhysRevB.31.6207
  • [30] TAYLOR J,GUO Hong,WANG Jian.Abinitio Modeling of Quantum Transport Properties of Molecular Electronic Devices[J].Phys Rev B,2001,63(24):45407.doi:10.1103/PhysRevB.63.245407
  • [31] BRANdBYGE M,MOZOS J L,ORdEJÓN P,et al. Density-functional Method for Nonequilibrium Electron Transport[J].Phys Rev B,2002,65(16):165401.doi:10.1103/PhysRevB.65.165401
  • [32] DUBOIS S M M,DECLERCK X,CHARLIER J C,et al. Spin Filtering and Magneto-resistive Effect at the Graphene/h-BN Ribbon Interface[J]. ACS Nano,2013,7(5):4578-4585.doi:10.1021/nn401322t