在线阅读 --自然科学版 2014年1期《一个描述GAV-9肽在不同pH值环境下界面水层中自组装行为的模型》
一个描述GAV-9肽在不同pH值环境下界面水层中自组装行为的模型--[在线阅读]
谢牧云1,2, 李海1, 张峰3, 张益1, 胡钧1
1. 中国科学院 上海应用物理研究所, 上海 201800;
2. 中国科学院 研究生院, 北京 100049;
3. 内蒙古农业大学 生命科学学院, 内蒙古 呼和浩特 010018
起止页码: 78--85页
DOI: 10.11826/j.issn.1000-5854.2014.01.017
摘要
pH值在很多生物过程中起到了重要作用,不仅在溶液中,在界面环境中也是如此.研究了GAV-9肽在酸性和碱性氛围下界面水层中的自组装行为.发现GAV-9肽在酸性氛围下自组装得到有序的纳米细丝,但在碱性氛围下自组装得到无序的纳米片层.此外,体相实验显示,GAV-9肽在中性和碱性溶液中自组装得到有序的纳米细丝,但在酸性溶液中未在云母表面吸附.基于此结论,提出以下模型:在中性和酸性氛围下,GAV-9肽是在固液界面上进行自组装的;在碱性氛围下,GAV-9肽是在气液界面上进行自组装的.

A Model Describing Self-assembly Behaviors of GAV-9 Peptide in Water Nanofilm Under Different pH Atmospheres
XIE Muyun1,2, LI Hai1, ZHANG Feng3, ZHANG Yi1, HU Jun1
1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Life Science, Inner Mongolia Agricultural University, Inner Mongolia Hohhot 010018, China
Abstract:
pH plays an important role in many biological processes, not only in bulk solutions, but also in confined environments.In this paper, we studied the self-assembly behaviors of GAV-9 peptide in water nanofilm under different pH atmospheres.It was found that GAV-9 peptide self-assembled into ordered nanofilaments under an acidic atmosphere but into randomly oriented nanosheets under an alkaline atmosphere.In addition, bulk experiments showed that GAV-9 assembled into ordered nanofilaments on mica in neutral and alkaline solutions, while it did not adsorb on the substrate in an acidic solution.Based on these results, we proposed a model that GAV-9 self-assembled at the water/solid interface under neutral and acidic atmospheres, while the process was conducted at the vapor/water interface under an alkaline atmosphere.

收稿日期: 2013-10-10
基金项目: 国家自然科学基金(10975175,90923002);中国科学院基金(KJCX2-EW-N03)

参考文献:
[1]HAMLEY I W.Peptide Fibrillization [J].Angewandte Chemie International Edition,2007,46:8128-8147.
[2]LASHUEL H A,LABRENZ S R,WOO L.Protofilaments,Filaments,Ribbons and Fibrils from Peptidomimetic Self-assembly:Implications for Amyloid Fibril Formation and Materials Science [J].Journal of the American Chemical Society,2000,122:5262-5277.
[3]RECHES M.Casting Metal Nanowires Within Discrete Self-assembled Peptide Nanotubes [J].Science,2003,300:625-627.
[4]ZHANG S.Fabrication of Novel Biomaterials Through Molecular Self-assembly [J].Nature Biotechnology,2003,21:1171-1178.
[5]CARNY O,SHALEV D E,GAZIT E.Fabrication of Coaxial Metal Nanocables Using a Self-assembled Peptide Nanotube Scaffold [J].Nano Letters,2006,6:1594-1597.
[6]LIU X,ZHANG Y,GOSWAMI D K.The Controlled Evolution of a Polymer Single Crystal [J].Science,2005,307:1763-1766.
[7]ZHOU X,LIU J,LI B.Assembly of Glucagon (proto) Fibrils by Longitudinal Addition of Oligomers [J].Nanoscale,2011,3:3049-3051.
[8]ZHOU X,ZHENG L,LI R.Biotemplated Fabrication of Size Controlled Palladium Nanoparticle Chains [J].Journal of Materials Chemistry,2012,22:8862-8867.
[9]RAMAN B,CHATANI E,KIHARA M.Critical Balance of Electrostatic and Hydrophobic Interactions is Required for β2-Microglobulin Amyloid Fibril Growth and Stability [J].Biochemistry,2005,44:1288-1299.
[10]CALAMAI M,TADDEI N,STEFANI M.Relative Influence of Hydrophobicity and Net Charge in the Aggregation of Two Homologous Proteins [J].Biochemistry,2003,42:15078-15083.
[11]TJERNBERG L.Charge Attraction and Beta Propensity Are Necessary for Amyloid Fibril Formation from Tetrapeptides [J].Journal of Biological Chemistry,2002,277:43243-43246.
[12]SHEN C L,MURPHY R M.Solvent Effects on Self-assembly of Beta-amyloid Peptide [J].Biophysical Journal,1995,69:640-651.
[13]WHITESIDES G M.Self-assembly at All Scales [J].Science,2002,295:2418-2421.
[14]ZHANG F,DU H N,ZHANG Z X.Epitaxial Growth of Peptide Nanofilaments on Inorganic Surfaces:Effects of Interfacial Hydrophobicity/Hydrophilicity [J].Angewandte Chemie International Edition,2006,45:3611-3613.
[15]CASTELLETTO V,HAMLEY I W,CENKER C.Influence of Salt on the Self-assembly of Two Model Amyloid Heptapeptides [J].The Journal of Physical Chemistry B,2010,114:8002-8008.
[16]PAGEL K,WAGNER S C,SAMEDOV K.Random Coils,β-sheet Ribbons,and α-helical Fibers:One Peptide Adopting Three Different Secondary Structures at Will [J].Journal of the American Chemical Society,2006,128:2196-2197.
[17]BOSE P P,DAS A K,HEGDE R P.pH-sensitive Nanostructural Transformation of a Synthetic Self-assembling Water-Soluble Tripeptide:Nanotube to Nanovesicle [J].Chemistry of Materials,2007,19:6150-6157.
[18]DONG H,PARAMONOV S E,AULISA L.Self-assembly of Multidomain Peptides:Balancing Molecular Frustration Controls Conformation and Nanostructure [J].Journal of the American Chemical Society,2007,129:12468-12472.
[19]CUI H,MURAOKA T,CHEETHAM A G.Self-assembly of Giant Peptide Nanobelts [J].Nano Letters,2009,9:945-951.
[20]DENG M,YU D,HOU Y.Self-assembly of Peptide Amphiphile C12 Aβ(11-17) into Nanofibrils [J].The Journal of Physical Chemistry B,2009,113:8539-8544.
[21]HAASS C,SCHLOSSMACHER M G,HUNG A Y.Amyloid β-peptide is Produced by Cultured Cells During Normal Metabolism [J].Nature,1992,359:322-325.
[22]SABATÉ R,ESTELRICH J.Evidence of the Existence of Micelles in the Fibrillogenesis of β-amyloid Peptide [J].The Journal of Physical Chemistry B,2005,109:11027-11032.
[23]ABEDINI A,RALEIGH D P.A Role for Helical Intermediates in Amyloid Formation by Natively Unfolded Polypeptides? [J].Physical Biology,2009,6:015005.
[24]BOKVIST M,GRÖBNER G.Misfolding of Amyloidogenic Proteins at Membrane Surfaces:The Impact of Macromolecular Crowding [J].Journal of the American Chemical Society,2007,129:14848-14849.
[25]BYSTRÖM R,AISENBREY C,BOROWIK T.Disordered Proteins:Biological Membranes as Two-dimensional Aggregation Matrices [J].Cell Biochemistry and Biophysics,2008,52:175-189.
[26]BUTTERFIELD S M,LASHUEL H A.Amyloidogenic Protein-membrane Interactions:Mechanistic Insight from Model Systems [J].Angewandte Chemie International Edition,2010,49:5628-5654.
[27]SEELIGER J,EVERS F,JEWORREK C.Cross-amyloid Interaction of Aβ and IAPP at Lipid Membranes [J].Angewandte Chemie International Edition,2012,51:679-683.
[28]AISENBREY C,BOROWIK T,BYSTRÖM R.How is Protein Aggregation in Amyloidogenic Diseases Modulated by Biological Membranes? [J].European Biophysics Journal,2007,37:247-255.
[29]SEELIG J.Thermodynamics of Lipid-peptide Interactions [J].Biochimica et Biophysica Acta-biomembranes,2004,1666:40-50.
[30]BALL P.Water as an Active Constituent in Cell Biology [J].Chemical Reviews,2008,108:74-108.
[31]CHAPLIN M.Do We Underestimate the Importance of Water in Cell Biology? [J].Nature Reviews Molecular Cell Biology,2006,7:861-866.
[32]VERDAGUER A,SACHA G M,BLUHM H.Molecular Structure of Water at Interfaces:Wetting at the Nanometer Scale [J].Chemical Reviews,2006,106:1478-1510.
[33]EWING G E.Ambient Thin Film Water on Insulator Surfaces [J].Chemical Reviews,2006,106:1511-1526.
[34]HU J,XIAO X D,OGLETREE D F.Imaging the Condensation and Evaporation of Molecularly Thin Films of Water with Nanometer Resolution [J].Science,1995,268:267-269.
[35]ODELIUS M,BERNASCONI M,PARRINELLO M.Two Dimensional Ice Adsorbed on Mica Surface [J].Physical Review Letters,1997,78:2855.
[36]LI H,ZHANG F,ZHANG Y.Peptide Diffusion and Self-assembly in Ambient Water Nanofilm on Mica Surface [J].The Journal of Physical Chemistry B,2009,113:8795-8799.
[37]YE M,ZHANG Y,LI H.Supramolecular Structures of Amyloid-related Peptides in an Ambient Water Nanofilm [J].The Journal of Physical Chemistry B,2010,114:15759-15765.
[38]XIE M,LI H,YE M.Peptide Self-assembly on Mica Under Ethanol-containing Atmospheres:Effects of Ethanol on Epitaxial Growth of Peptide Nanofilaments [J].The Journal of Physical Chemistry B,2012,116:2927-2933.
[39]MIRANDA P B,XU L,SHEN Y R.Icelike Water Monolayer Adsorbed on Mica at Room Temperature [J].Physical Review Letters,1998,81:5876-5879.
[40]WANG J,KALINICHEV A G,KIRKPATRICK R J.Structure,Energetics and Dynamics of Water Adsorbed on the Muscovite (001) Surface:A Molecular Dynamics Simulation [J].The Journal of Physical Chemistry B,2005,109:15893-15905.
[41]SHIN J W.Infrared Signature of Structures Associated with the H+(H2O)n (n=6 to 27) Clusters [J].Science,2004,304:1137-1140.
[42]PETERSEN M K,IYENGAR S S,DAY T J F.The Hydrated Proton at the Water Liquid/vapor Interface [J].The Journal of Physical Chemistry B,2004,108:14804-14806.
[43]PETERSEN P B,SAYKALLY R J.Evidence for an Enhanced Hydronium Concentration at the Liquid Water Surface [J].The Journal of Physical Chemistry B,2005,109:7976-7980.
[44]MUCHA M,FRIGATO T,LEVERUBG L M.Unified Molecular Picture of the Surfaces of Aqueous Acid,Base,and Salt Solutions [J].The Journal of Physical Chemistry B,2005,109:7617-7623.
[45]TARBUCK T L,OTA S T,RICHMOND G L.Spectroscopic Studies of Solvated Hydrogen and Hydroxide Ions at Aqueous Surfaces [J].Journal of the American Chemical Society,2006,128:14519-14527.
[46]BEATTIE J K,DJERDJEV A M.The Pristine Oil/water Interface:Surfactant-free Hydroxide-charged Emulsions [J].Angewandte Chemie International Edition,2004,43:3568-3571.
[47]BEATTIE J K,DJERDJEV A M,WARR G G.The Surface of Neat Water Is Basic [J].Faraday Discussions,2009,141:31-39.
[48]BUCH V,MILET A,VACHA R.Water Surface Is Acidic [J].Proceedings of the National Academy of Sciences,2007,104:7342-7347.
[49]PETERSEN P B,SAYKALLY R J.Is the Liquid Water Surface Basic or Acidic Macroscopic vs Molecular-scale Investigations [J].Chemical Physics Letters,2008,458:255-261.
[50]VCHA R,BUCH V,MILET A.Response to Comment on Autoionization at the Surface of Neat Water:Is the Top Layer pH Neutral,Basic,or Acidic? [J].Physical Chemistry Chemical Physics,2008,10:332-333.