在线阅读 --自然科学版 2014年1期《纳米微腔中荷电流体的压力分布》
纳米微腔中荷电流体的压力分布--[在线阅读]
康艳霜1, 孙宗利2
1. 河北农业大学 理学院, 河北 保定 071001;
2. 华北电力大学 科技学院, 河北 保定 071051
起止页码: 42--45页
DOI: 10.11826/j.issn.1000-5854.2014.01.009
摘要
基于经典密度泛函理论,研究了受限于球腔空间的荷电流体的单位面积压力分布.计算结果显示,增大体密度和升高温度加剧体系内部压力分布曲线的震荡趋势.与此相反,增大色散作用的截断半径和分子的荷电量削弱曲线的震荡趋势.所得结果可为理解和掌握受限流体的力学性质提供理论参考和线索.

Pressure Profile of Charged Fluids Confined in Cavity
KANG Yanshuang1, SUN Zongli2
1. College of Sciences, Agriculture University of Hebei, Hebei Baoding 071001, China;
2. College of Science and Technology, North China Electric Power University, Hebei Baoding 071051, China
Abstract:
Based on the classical density functional theory, the pressure profile of charged fluid confined in spherical cavity is investigated.The calculated results show that increase of bulk density and temperature prefers to enhance the oscillation of the pressure profile in the system.On the contrary, increase of cut-off of dispersion and the charge carried by molecular tends to weaken the oscillation of the pressure profile.The results can provide useful reference and clues for understanding the mechanical properties of fluids.

收稿日期: 2013-7-2
基金项目: 中央高校基本科研业务费专项资金(13MS105);保定市科学研究与发展计划资助项目(13ZR022)

参考文献:
[1]HENDERSON D.Fundamentals of Inhomogeneous Fluids [M].New York:Dekker,1992.
[2]EVANS R.The Nature of the Liquid-vapour Interface and Other Topics in the Statistical Mechanics of Non-uniform,Classical Fluids [J].Adv Phys,1979,28(2):143-200.
[3]HANSEN J P,MCDONALD I R.Theory of Simple Liquids [M].New York:Academic,1986.
[4]YU Yangxin,WU Jianzhong.A Fundamental-measure Theory for Inhomogeneous Associating Fluids [J].J Chem Phys,2004,116(16):7094-7103.
[5]YU Yangxin,LI Yingfeng,ZHENG Yuanxiang.Thin-thick Film Transitions on a Planar Solid Surface:A Density Functional Study [J].Chin Phys Lett,2010,27(3):037101.
[6]FU Dong,LI Xiaosen.Phase Equilibria and Plate-fluid Interfacial Tensions for Associating Hard Sphere Fluids Confined in Slit Pores [J].J Chem Phys,2006,125:084716.
[7]SUN Zongli,KANG Yanshuang.Curvature Dependence of Interfacial Properties for Associating Lennard-Jones Fluids:A Density Functional Study [J].Chin Phys Lett,2011,28(2):026101.
[8]KANG Yanshuang,WANG Haijun.Density Functional Theory Approach for Charged Hard Sphere Fluids Confned in Spherical Micro-Cavity [J].Chin Phys Lett,2009,26(12):126102.
[9]ROSENFELD Y.Free-energy Model for the Inhomogeneous Hard-sphere Fluid Mixture and Density-functional Theory of Freezing [J].Phys Rev Lett,1989,63:980-983.
[10]ROTH R,EVANS R,LANG A,et al,Fundamental Measure Theory for Hard-sphere Mixtures Revisited:The White Bear Version [J].J Phys:Condens Matter,2002,14(46):12063-12078.
[11]YU Yangxin,WU Jianzhong.Structures of Hard-sphere Fluids for a Modified Fundamental-measure Theory [J].J Chem Phys,2002,117:10156-10164.
[12]TANG Yiping.On the First-order Mean Spherical Approximation [J].J Chem Phys,2003,118:4140-4148.
[13]SUN Zongli,KANG Yanshuang,KANG Yanmei,et al.Density Functional Study of the Pressure Tensor for Inhomogeneous Lennard-Jones Fluids [J].Chin Phys B,2012,21(6):066103.