在线阅读 --自然科学版 2014年1期《不确定混沌系统的同步控制及参数辨识》
不确定混沌系统的同步控制及参数辨识--[在线阅读]
郝建红, 宾虹, 张潇, 姜苏娜
华北电力大学 电气与电子工程学院, 北京 102206
起止页码: 30--35页
DOI: 10.11826/j.issn.1000-5854.2014.01.007
摘要
针对阶次不等的异结构不确定混沌系统的同步问题,在证明一种阶次小于1的分数阶系统稳定性理论适用于整数阶系统的基础上,提出一种普适性控制器设计方法,不仅能够实现阶次不等的异结构混沌系统的同步,同时能够完成响应系统未知参数辨识.以Lorenz混沌系统和耦合发电机混沌系统为研究对象,进行了数值仿真,验证了所提方法的有效性.

Synchronization of Uncertain Chaotic Systems and Parameters Identification
HAO Jianhong, BIN Hong, ZHANG Xiaoyan, JIANG Suna
School of Electric and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Abstract:
Synchronization of different chaotic systems with different orders and unknown parameters and parameters identification are discussed.It is proved that a stability theorem which is for fractional-order system whose order is less than 1 and it can be applicable to the integer-order system by using Lyapunov stability theorem.Based on this theorem, an universal method of designing controller is proposed.The method not only synchronizes different chaotic systems with different orders and unknown parameters, but also identifies unknown parameters of the respond system.By simulating Lorenz chaotic system and coupled dynamos chaotic system, the results of numerical simulation certify that the proposed method is effective and feasible.

收稿日期: 2013-8-26
基金项目: 国家自然科学基金(61250008);科技部国际科技合作项目(2011DFR00780)

参考文献:
[1]PECORA L M,CARROLL T L.Synchronization in Chaotic Systems [J].Phys Rev Lett,1990,64(8):821-827.
[2]李芳,胡爱花,徐振源.两个不相同系统的广义同步化 [J].物理学报,2006,55(2):590-597.
[3]AGIZA H N,YASSEN M T.Synchronization of Rössler and Chen Chaotic Dynamical Systems Using Active Control [J].Phys Lett A,2001,278(4):191-197.
[4]MAINIERI R,REHACEK J.Projective Synchronization in Three-dimensional Chaotic Systems [J].Phys Rev Lett,1999,82(15):3042-3045.
[5]贾飞蕾,徐伟.一类参数不确定混沌系统的延迟同步 [J].物理学报,2007,56(6):3101-3106.
[6]TAVAZOEI M S,HAERI M.Synchronization of Chaotic Fractional-order Systems via Active Sliding Mode Controller [J].Phys A:Statistical Mechanics and Its Applications,2008,387(1):57-70.
[7]武相军,王兴元.基于非线性控制的超混沌Chen系统混沌同步 [J].物理学报,2006,55(12):6261-6266.
[8]WANG Yanwu,GUAN Zhihong,WEN Xiaojiang.Adaptive Synchronization for Chen Chaotic System with Fully Unknown Parameters [J].Chaos,Solitons & Fractals,2004,19:899-903.
[9]周平,邝菲.分数阶混沌系统与整数阶混沌系统之间的同步 [J].物理学报,2010,59(10):6851-6858.
[10]胡建兵,肖建,赵灵冬.阶次不等的分数阶混沌系统同步 [J].物理学报,2011,60(11):181-184.
[11]金鑫,江铭炎.基于非线性控制的异结构混沌同步控制 [J].山东大学学报:工学版,2007,37(5):78-83.
[12]胡建兵,韩焱,赵灵.一种新的分数阶系统稳定理论及在back-stepping方法同步分数阶混沌系统中的应用 [J].物理学报,2009,58(4):2235-2239.
[13]李德奎,连玉平,李玉龙.异结构混沌系统的自适应函数投影同步及参数辨识 [J].周口师范学院学报,2013,30(2):30-33.