在线阅读 --自然科学版 2014年1期《不动点集为P(6,2n+1)的对合》
不动点集为P(6,2n+1)的对合--[在线阅读]
赵彦1, 丁雁鸿2, 毛婷2
1. 河北师范大学 汇华学院, 河北 石家庄 050091;
2. 河北师范大学 数学与信息科学学院, 河北 石家庄 050024
起止页码: 19--24页
DOI: 10.11826/j.issn.1000-5854.2014.01.005
摘要
设(MT)是一个带有光滑对合T的光滑闭流形,TM上的不动点集为F={x|Tx)=xxM},则F为M的闭子流形的不交并.证明了:当F=P(6,2n+1)(n为奇数)时,(MT)协边于0.

Involutions with Fixed Point Set P(6,2n+1)
ZHAO Yan1, DING Yanhong2, MAO Ting2
1. College of Huihua, Hebei Normal University, Hebei Shijiazhuang 050091, China;
2. College of Mathematics and Information Sciences, Hebei Normal University, Hebei Shijiazhuang 050024, China
Abstract:
Let (M, T) be a smooth closed manifold with a smooth involution T.It is known that the fixed point set F={x|T(x)=x, xM} of T is the disjoint union of smooth closed submanifold of M.In this paper, we show that (M, T) is bounded, privided F=P(6, 2n+1), n odd.

收稿日期: 2013-1-12
基金项目: 河北省自然科学基金(A2011205075);河北师范大学汇华学院科研基金(20110403)

参考文献:
[1]吴振德.不动点集为Dold流形P(2m,2n)的带有对合的流形 [J].数学学报,1988,31(1):72-82.
[2]刘秀贵.不动点集是Dold流形P(2m+1,2n+1)的对合 [J].数学年刊,2002,23(6):779-788.
[3]刘秀贵.不动点集是Dold流形P(2m,2n+1)的对合 [J].四川大学学报:自然科学版,2003,40(5):795-797.
[4]丁雁鸿,赵彦,李珊珊.不动点集为P(2m,2l+1)∪P(2m,2n+1)的对合 [J].数学学报,2008,51(5):971-978.
[5]丁雁鸿,赵彦,李日成.不动点集为P(2m,2m)∪P(2m,2m+1)的对合 [J].吉林大学学报:理学版,2010,48(4):588-594.
[6]CONNER P E.Differentiable Periodic Maps,Lecture Notes in Math [M].Berlin:Spring,1979:738.
[7]KOSNIOWSKI C,STONG R E.Involutions and Characteristic Numbers [J].Topology,1978,17:309-330.
[8]FUJII M,YASUI T.KO-cohomologies of Dold Manifold,Math [J].J Okayama Univ,1973,16:55-84.
[9]STONG R E.Vector Bundles over Dold Manifolds [J].Fund Math,2001,169:85-95.