在线阅读 --自然科学版 2014年1期《一阶Weyl代数A1kx)的子模分类》
一阶Weyl代数A1kx)的子模分类--[在线阅读]
王志华1, 李立斌2
1. 南京师范大学 泰州学院, 江苏 泰州 225300;
2. 扬州大学 数学科学学院, 江苏 扬州 225002
起止页码: 1--5页
DOI: 10.11826/j.issn.1000-5854.2014.01.001
摘要
通过对一元多项式环k[x]上所有乘法子集进行分类,给出了一阶Weyl代数A1上模kx)的所有非零子模的分类.

Classification of the Submodules of k(x) over the First Weyl Algebra A1
WANG Zhihua1, LI Libin2
1. Taizhou College, Nanjing Normal University, Jiangsu Taizhou 225300, China;
2. School of Mathematics, Yangzhou University, Jiangsu Yangzhou 225002, China
Abstract:
In this paper, all the nonzero submodules of k(x) over the first Weyl algebra A1 are classified by the classification of the multiplicative subsets of the polynomial ring k[x].

收稿日期: 2012-12-25
基金项目: 高等学校博士学科点专项科研基金(20123250110005);江苏省普通高校研究生科研创新计划(CXZZ13-0889);江苏省“青蓝工程”项目;扬州大学优秀博士学位论文基金

参考文献:
[1]OAKU T,TAKAYAMA N.Algorithms for D-modules-restriction,Tensor Product,Localization,and Local Cohomology Groups [J].J Pure Appl Algebra,2001,156(2/3):267-308.
[2]TSAI H,WALTHER U.Computing Homomorphisms Between Holonomic D-modules [J].J Symbolic Comput,2001,32(6):597-617.
[3]OAKU T,TAKAYAMA N,TSAI H.Polynomial and Rational Solutions of Holonomic Systems [J].J Pure Appl Algebra,2001,164(1/2):199-220.
[4]李会师.Weyl代数研究简介 [J].数学进展,1998,27(2):103-121.
[5]WANG Zhihua,WEI Junchao,LI Libin.Poincare Series and an Application to Weyl Algebras [J].Acta Math Scientia,2011,31B(2):459-467.
[6]LEYKIN A.Constructibility of the Set of Polynomials with a Fixed Bernstein-Sato Polynomial:An Algorithmic Approach [J].J Symbolic Comput,2001,32(6):663-675.
[7]WALTHER U.Bernstein-Sato Polynomials Versus Cohomology of the Milnor Fiber for Generic Hyperplane Arrangements [J].Compositio Math,2005,141(1):121-145.
[8]KASHIWARA M.On the Holonomic Systems of Linear Differential Equations II [J].Invent Math,1978,49(2):121-135.
[9]COUTINHO S C.A Primer of Algebraic D-modules [M].Cambridge:Cambridge University Press,1995:171-178.
[10]BLOCK R E.The Irreducible Representations of the Lie Algebrasl(2) and of the Weyl Algebra [J].Adv Math,1981,39:69-110.
[11]WANG Zhihua,LI Libin.On Holonomic Module k [J].J Math,2013,33(5):773-780.
[12]SERGE L.Algebra [M].New York:Springer-verlag,2002:573-574.