在线阅读 --自然科学版 2021年1期《一类神经元模型的放电行为与同步研究》
一类神经元模型的放电行为与同步研究--[在线阅读]
刘畅, 方定
信阳职业技术学院 数学与计算机科学学院, 河南 信阳 464000
起止页码: 46--52页
DOI: 10.13763/j.cnki.jhebnu.nse.202102004
摘要
以磁通e-HR神经元模型为基础,基于理论分析与数值仿真相结合的方法,首先分析了磁通e-HR神经元模型的放电行为,发现该神经元模型存在隐藏的极限环吸引子.通过双参数分岔分析观察到,系统具有倍周期和无混沌伴随的加周期等典型的放电行为.设计了自适应同步控制器,研究了时滞对电突触耦合的磁通e-HR神经元模型达到同步的影响.当时滞和耦合强度取一定值时,给从系统施加非线性控制器,从系统在控制器作用下与主系统达到同步.

Study on Discharge Behavior and Synchronization for a Neuron Model
LIU Chang, FANG Ding
Department of Mathematics and Computer Sciences, Xinyang Vocational and Technical College, Henan Xinyang 464000, China
Abstract:
Based on the flux-e-HR neuron model,the discharge behavior of the flux-e-HR neuron model is analyzed by using theoretical analysis and numerical simulation,and the hidden limit cycle attractors are found.By two-parameter bifurcation analysis,we can observe the typical discharge phenomena,such as period doubling and period adding without chaos.In addition,the adaptive synchronization controllers are designed to study the effect of time delay on the synchronization of the flux e-HR neuron model with electrical synaptic coupling.If the time delay and coupling strength are given a certain value,the slave system added by a nonlinear control theory will synchronize with the master system.

收稿日期: 2020-08-26
基金项目:

参考文献:
[1]SELVERSTON A I,RABINOVICH M I.Reliable Circuits from Irregular Neurons:A Dynamical Approach to Understanding Central Pattern Generators[J].Journal of Physiology Paris,2000,94(5):357-374.doi:10.1016/S0928-4257(00)01101-3
[2]于欢欢,张莉,安新磊,等.磁通神经元模型的放电行为分析[J].河北师范大学学报(自然科学版),2019,43(1):37-44.doi:10.13763/j.cnki.jhebnu.nse.2019.01.006 YU Huanhuan,ZHANG Li,AN Xinlei,et al.Analysis of Discharge Behavior in Flux Neuron Model[J].Journal of Hebei Normal University (Natural Science),2019,43(1):37-44.
[3]乔帅,安新磊,王红梅,等.磁通e-HR神经元隐藏放电与分岔行为的研究[J].云南大学学报(自然科学版),2020,42(4):685-694.doi:10.7540/j.ynu.20190642 QIAO Shuai,AN Xinlei,WANG Hongmei,et al.Hidden Discharge and Bifurcation Behavior of Magnetic Flux e-HR Neurons[J].Journal of Yunnan University (Natural Science),2020,42(4):685-694.
[4]邬开俊.Hindmarsh-Rose神经元模型的双参数分岔特性及耦合同步研究[D].兰州:兰州交通大学,2017. WU Kaijun.Two-parameter Bifurcation Characteristics and Coupling Synchronization Research of Hindmarsh-Rose Neuron Model[D].Lanzhou:Lanzhou Jiaotong University,2017.
[5]邬开俊,单亚洲,王春丽.时滞作用下的化学突触耦合的Hindmarsh-Rose神经元同步研究[J].力学季刊,2017(1):127-138.doi:10.15959/j.cnki.0254-0053.2017.01.014 WU Kaijun,SHAN Yazhou,WANG Chunli.Synchronization of Hindmarsh-Rose Neurons with Chemical Synapse Coupling Under Time Delay[J].Journal of Mechanics Quarterly,2017(1):127-138.
[6]吴望生,唐国宁.两耦合HR混沌神经元同步研究[J].长江大学学报(自然科学版),2016(7):22-27.doi:10.16772/j.cnki.1673-1409.2016.07.006 WU Wangsheng,TANG Guoning.Synchronization of Two-coupling HR Chaotic Neurons[J].Journal of Changjiang University (Natural Science),2016(7):22-27.
[7]邬开俊,单亚州,杜迢迢,等.耦合神经元的混沌自适应同步控制及应用[J].兰州交通大学学报,2016,35(6):35-40.doi:10.3969/j.issn.1001-4373.2016.06.007 WU Kaijun,SHAN Yazhou,DU Tiaotiao,et al.Chaotic Adaptive Synchronization Control and Application of Coupled Neurons[J].Journal of Lanzhou Jiaotong University,2016,35(6):35-40.
[8]HETTIARACHCHI I T,LAKSHMANAN S,BHATTI A,et al.Chaotic Synchronization of Time-delay Coupled Hindmarsh-Rose Neurons via Nonlinear Control[J].Nonlinear Dynamics,2016,86(2):1249-1262.doi:10.1007/s11071-016-2961-4
[9]LAKSHMANAN S,LIM C P,NAHAVNDI S,et al.Dynamical Analysis of the Hindmarsh-Rose Neuron with Time Delays[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(8):1953-1958.doi:10.1109/TNNLS.2016.2557845
[10]ZHENG Y G,WANG Z H.Time-delay Effect on the Bursting of the Synchronized State of Coupled Hindmarsh-Rose Neurons[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2012,22(4):043127.doi:10.1063/1.4768664
[11]STEUR E,MURGUIA C.Synchronization and Partial Synchronization Experiments with Networks of Time-delay Coupled Hindmarsh-Rose Neurons[J].International Journal of Bifurcation and Chaos,2016,26(7):1650111.doi:10.1142/S021812741650111X
[12]单亚州.ML神经元耦合模型的同步研究与应用[D].兰州:兰州交通大学,2016. SHAN Yazhou.Synchronization Research and Application of ML Neuron Coupling Model[D].Lanzhou:Lanzhou Jiaotong University,2016.