在线阅读 --自然科学版 2021年1期《基于小波自适应阈值的脑CT图像去噪研究》
基于小波自适应阈值的脑CT图像去噪研究--[在线阅读]
张爱桃, 程思齐, 肖雨, 周旭, 李连捷
河北医科大学 医学影像学院, 河北 石家庄 050017
起止页码: 19--25页
DOI: 10.13763/j.cnki.jhebnu.nse.202101004
摘要
利用自适应小波阈值算法抑制脑部CT图像噪声,以提高图像质量.通过仿真实验,确定自适应滤波阈值与噪声强度的关系,然后采用真实脑部CT图像及自然图像进行验证,并与常用小波阈值算法比较.提出的算法能够抑制图像的加性白噪声,使峰值信噪比提高7~10dB,同时更好地保留了图像细节及边缘信息.小波自适应阈值算法能够对不同噪声水平的脑CT图像及自然图像进行自适应处理,提高峰值信噪比,改善图像质量.

Denoising Research of Brain CT Based on the Adaptive Wavelet Thresholding Algorithm
ZHANG Aitao, CHENG Siqi, XIAO Yu, ZHOU Xu, LI Lianjie
School of Medical Imaging, Hebei Medical University, Hebei Shijiazhuang 050017, China
Abstract:
In order to improve the image quality,the adaptive wavelet threshold algorithm is used to suppress the noise of brain CT image.The relationship between the adaptive filtering threshold and noise intensity is determined by simulation experiment.Then the real brain CT image and the natural image are used to demonstrate the validity of the proposed theory.Compared with the common wavelet threshold algorithm,the algorithm proposed in this paper,could not only suppress the additive white noise of the image effectively to enhance the SNR by 7~10dB,but also better preserve the image details and edge information.The wavelet adaptive threshold algorithm can process brain CT images and natural images with different noise levels,effectively suppress noise and improve image quality.

收稿日期: 2020-07-25
基金项目: 河北省卫生和计划生育委员会科研基金(201904);河北省医学科学研究课题(20200862)

参考文献:
[1]周光湖.计算机断层摄影原理及应用[M].成都:成都电讯工程学院出版社,1986:331-335. ZHOU Guanghu.Principle and Application of Computed Tomography(CT)[M].Chengdu:Chengdu Institute of Telecommunication Engineering Press,1986:331-335.
[2]金宝荣,张晓槟,张越.影响CT图像质量的变量因素及控制对策[J].数理医药学杂志,2004,17(2):168-169.doi:10.3969/j.issn.1004-4337.2004.02.034 JIN Baorong,ZHANG Xiaobin,ZHANG Yue.Variable Factor and Control Countermeasure of Effect a Change in Quality of CT Image[J].Journal of Mathematical Medicine,2004,17(2):168-169.
[3]赵瑞珍,宋国乡.一种基于小波变换的白噪声消噪方法的改进[J].西安电子科技大学学报,2000,27(5):619-622.doi:10.3969/j.issn.1001-2400.2000.05.020 ZHAO Ruizhen,SONG Guoxiang.An Improved Method for White Noise Reduction Based on Wavelet Transform[J].Journal of Xidian University(Natural Science),2000,27(5):619-622.
[4]王英,曾光宇.图像去噪算法研究[J].电脑与信息技术,2011,19(4):8-12.doi:10.3969/j.issn.1005-1228.2011.04.003 WANG Ying,ZENG Guangyu.Research on Image De-noising Algorithm[J].Computer and Information Technology,2011,19(4):8-12.
[5]MALLAT S G.Theory for Multire Solution Signal Deeom Position[J].IEEE Trans on PAMI,1989,11(7):674-693.doi:10.1109/34.192463
[6]MALLAT S G.Singularity Detection and Processing with Wavelets[J].IEEE Trans on Information Theory,1992,38(2):617-643.doi:10.1109/18.119727
[7]XU Y S,WEAVER J B,HEALY D M.Wavelet Transform Domain Filters:Aspatially Selective Noise Filtration Technique[J].IEEE Trans on Image Proc,1994,3(6):747-758.doi:10.1109/83.336245
[8]DONOHO D L.Denoising by Soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627.doi:10.1109/18.38200
[9]LAKHWINDER K,SAVIIA G,RAM C C.Image Denoising Using Wavelet Thresholding[C]//Proceedings of the Third Indian Lonference on Computer Vision,Graphics & Image Processing.Ahmadabad:Allied Publisher Private Limited,2002:1522-1531.
[10]刘成云,陈振学,马于涛.自适应阈值的小波图像去噪[J].光电工程,2007,34(6):77-81.doi:10.3969/j.issn.1003-501X.2007.06.016 LIU Chengyun,CHEN Zhenxue,MA Yutao.Adaptive Wavelet Thresholding Method for Image Denoising[J].Opto Electronic Engineering,2007,34(6):77-81.
[11]CHAN S G,YU B,VETTERLI M.Adaptive Wavelet Thresholding for Image Denoising and Compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546.doi:10.1109/83.862633
[12]郭中华,李树庆,王磊,等.自适应阈值的小波去噪改进算法研究[J].重庆邮电大学学报(自然科学版),2015,27(6):740-744.doi:10.3979/j.issn.1673-825X.2015.06.006 GUO Zhonghua,LI Shuqing,WANG Lei,et al.Improved Algorithm with Auto-adaptive Threshold for Wavelet Image Denoising[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science),2015,27(6):740-744.