在线阅读 --自然科学版 2021年1期《一类刻画喷雾模型两相流系统解的存在唯一性》
一类刻画喷雾模型两相流系统解的存在唯一性--[在线阅读]
陈昌飞, 蒋鹏
河海大学 理学院, 江苏 南京 210098
起止页码: 1--7页
DOI: 10.13763/j.cnki.jhebnu.nse.202101001
摘要
讨论了由可压缩Navier-Stokes方程组与Vlasov方程耦合的一类薄的喷雾模型初边值问题光滑解的整体存在性.该模型刻画了在气体和其中悬浮的颗粒物(气溶胶)所组成的两相流系统中,空气与颗粒物自身的运动规律以及两者之间的相互作用.其中颗粒群中的颗粒运动是由气体动力以及颗粒之间相互碰撞的2种力所支配,该运动通过Vlasov方程来刻画,气体的运动则由可压缩Navier-Stokes方程组刻画.利用经典的能量估计方法,并结合颗粒运动的反射边界条件,求出该系统整体光滑解的存在唯一性.

Existence and Uniqueness of Solution for a Two-phase Flow System Describing Spray Model
CHEN Changfei, JIANG Peng
College of Science, Hohai University, Jiangsu Nanjing 210098, China
Abstract:
This paper mainly discusses the global existence of the smooth solution to the initial boundary value problem for a thin spray model coupled by the compressible Navier-Stokes equations and the Vlasov equation.The model describes the motion law and interaction between air and particulate matter in a two-phase flow system composed of gases and aerosols.The particle movement in the particle group is dominated by the force of gas and the force of collision between particles,which is described by the Vlasov equation,while the gas movement is described by the compressible Navier-Stokes equations.With the classical energy estimation method and the reflection boundary condition of the particle motion,the existence and uniqueness of the global smooth solution to the system is obtained.

收稿日期: 2020-09-10
基金项目: 江苏省自然科学基金(BK20191296);中央高校业务费(2019B19114)

参考文献:
[1]BARANGER C,BOUDIN L,JABIN P,et al.A Modeling of Biospray for the Upper Airways[J].Esaim-control Optimisation and Calculus of Vaviation Proc,2005,14:41-47.doi:10.1051/proc2005004
[2]BERRES S,BÜRGER R,TORY E M.Mathematical Model and Numerical Simulation of the Liquid Fluidization of Polydisperse Solid Particle Mixtures[J].Comput Visual Sci,2004(6):67-74.doi:10.1007/bf02663035
[3]WILLIAMS F A.Spray Combustion and Atomization[J].Phys Fluid,1958(1):541-555.doi:10.1063/1.1724379
[4]WILLIAMS F A.Combustion Theory[M].2nd ed.London:Benjamin Cummings Pbul,1985.doi:10.1016/0010-2180(59)90023-9
[5]MELLET A,VASSEUR A.Global Weak Solutions for a Vlasov-Fokker-Planck/compressible Navier-Stokes System of Equations[J].Math Models Methods Appl Sci,2007,17:1039-1063.doi:10.1142/s0218202507002194
[6]MELLET A,VASSEUR A.Asymptotic Analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes System of Equations[J].Comm Math Phys,2008,281:573-596.doi:10.1007/s00220-008-0523-4
[7]WANG D,YU C.Global Weak Solution to the Inhomogeneous Navier-Stokes-Vlasov Equations[J].Differential Equations,2015,259(8):3976-4008.doi:10.1016/j.jde.2015.05.016
[8]YU C.Global Weak Solutions to the Incompressible Navier-Stokes-Vlasov Equations[J].Math Pures Appl,2013,100(9):275-293.doi:10.1016/j.matpur.2013.01.001
[9]CARRILLO J A,DUAN R,MOUSSA A.Global Classical Solution Close to Equillibrium to the Vlasov-Euler-Fokker-Planck System[J].Kinet Relat Models,2011(4):227-258.doi:10.1007/s11425-005-0062-9
[10]LI F,MU Y,WANG D.Global Well-posedness and Large Time Behavior of Strong Soltion to a Kinetic-fluid Model[J].SIAM Math Anal,2017,49(2):984-1026.doi:10.1137/15m1053049
[11]HAMDACHE K.Global Existence and Large Time Behaviour of Solutions for the Vlasov-Stokes Equations[J].Indust Appl Math,1998,15(1):51-74.doi:10.1007/bf03167396
[12]DESVILLETTES L.Some New Results of Existence for the Theory of Sprays[C].Workshop,Fluid-Kinetic Modeling in Biology,Physics and Engineering.Cambridge:The University of Cambridge Press,2010.
[13]RICCI V.Derivation of Models for Thin Sprays from a Multiphase Boltzmann Model[C].From Particle Systems to Partial Differential Equations.Berlin:Springer,2017:285-308.