在线阅读 --自然科学版 2020年5期《氮修饰对TiO2能带结构及光催化性能的影响》
氮修饰对TiO2能带结构及光催化性能的影响--[在线阅读]
张艳峰, 王青丽, 贾密英
河北师范大学 化学与材料科学学院, 河北 石家庄 050024
起止页码: 416--421页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.05.008
摘要
采用无模板一步水热法合成氮修饰的TiO2样品,以12W蓝色LED灯作为光源,甲基橙作为模拟污染物,测试了N-TiO2样品的光催化性能.实验结果表明,光照6h甲基橙降解率达到91.9%,N-TiO2样品具有微球结构,微球由直径10~20nm、长度20~200nm的纳米棒组成.N-TiO2样品的光吸收峰红移至600nm,带隙能已从纯金红石型TiO2的3.00eV降至N-TiO2的2.02eV.研究发现,氮元素占据了TiO2表面,并且氮原子取代氧原子形成了O—Ti—N化学键.研究表明表面修饰可以缩小带隙,提高光催化性能.

Effect of Nitrogen Modified on the Band Structure and Photocatalytic Performance of TiO2
ZHANG Yanfeng, WANG Qingli, JIA Miying
College of Chemistry and Material Science, Hebei Normal University, Hebei Shijiazhuang 050024, China
Abstract:
Nitrogen modified TiO2 was synthesized by a simple one-pot template-free hydrothermal method.With 12 W blue light-emitting diode(LED) as the light source,the as-prepared samples exhibited high visible light photocatalytic activity in the degradation of methyl orange.Experimental results showed that the degradation rate of methyl orange reached 91.9% after 6h irradiation.N-TiO2 samples have microspheres structure,which consist of nanorods with diameters of 10~20nm and lengths of 20~200nm.The optical absorption peak for N-TiO2 showed a red shift to 600nm and the band gap decreased from 3.00eV for pure rutile TiO2 to 2.02eV for N-TiO2.It was found that nitrogen was not incorporated into crystal lattice of TiO2,but modified on the surface of TiO2.Thus,it could be deduced that the surface modification could narrow the band gap,and improve the photocatalytic properties.

收稿日期: 2020-02-02
基金项目: 国家自然科学基金(11179029);河北省教育厅重点项目(ZD2018019);河北师范大学技术创新基金(L2017K05)

参考文献:
[1]ZHANG G,JI S,ZHANG Y,et al.Facile Synthesis of p-n Heterojunction of Phosphorus Doped TiO2 and BiOI with Enhanced Visible-light Photocatalytic Activity[J].Solid State Commun,2017,259:34-39.doi:10.1016/j.ssc.2017.05.005
[2]NISHIKAWA M,SHIROISHI W,HONGHAO H,et al.Probability of Two-step Photoexcitation of Electron from Valence Band to Conduction Band Through Doping Level in TiO2[J].J Phys Chem A,2017,121(32):5991-5997.doi:10.1021/acs.jpca.7b05214
[3]GÓMEZ-AVILÉS A,PEÑAS-GARZÓN M,BEDIA J,et al.C-modified TiO2 Using Lignin as Carbon Precursor for the Solar Photocatalytic Degradation of Acetaminophen[J].Chemical Engineering Journal,2018,358(15):1574-1582.doi:10.1016/j.cej.2018.10.154
[4]BYRNE C,MORAN L,HERMOSILLA D,et al.Effect of Cu Doping on the Anatase-to-rutile Phase Transition in TiO2 Photocatalysts:Theory and Experiments[J].Applied Catalysis B:Environmental,2019,246(5):266-276.doi:10.1016/j.apcatb.2019.01.058
[5]BERGAMONTI L,PREDIERI G,PAZ Y,et al.Enhanced Self-cleaning Properties of N-doped TiO2 Coating for Cultural Heritage[J].Microchemical Journal,2017,133:1-12.doi:10.1016/j.microc.2017.03.003
[6]ASAHI R,MORIKAWA T,OHWAKI T,et al.Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides[J].Science,2001,293(5528):269-271.doi:10.1126/science.1061051
[7]TAO J,YANG M,CHAI J W,et al.Atomic N Modified Rutile TiO2(110) Surface Layer with Significant Visible Light Photoactivity[J].J Phys Chem C,2014,118(2):994-1000.doi:10.1021/jp408798f
[8]LIU Y,LIU J,LIN Y,et al.Simple Fabrication and Photocatalytic Activity of S-doped TiO2 Under Low Power LED Visible Light Irradiation[J].Ceram Int,2009,35(8):3061-3065.doi:10.1016/j.ceramint.2009.04.021
[9]OZTURK F,ECE R E,POLAT N,et al.Application of Electric Resistance Heating Method on Titanium Hot Forming at Industrial Scale[J].Arabian J Sci Eng,2016,41(11):4441-4448.doi:10.1007/s13369-016-2159-6
[10]OU H H,LO S L,LIAO C H.N-doped TiO2 Prepared from Microwave-assisted Titanate Nanotubes(Na<i>xH2-xTi3O7):The Effect of Microwave Irradiation During TNT Synthesis on the Visible Light Photoactivity of N-doped TiO2[J].J Phys Chem C,2011,115(10):4000-4007.doi:10.1021/jp1076005
[11]CHENG X,YU X,XING Z,et al.Synthesis and Characterization of N-doped TiO2 and Its Enhanced Visible-light Photocatalytic Activity[J].Arabian J Chem,2016,9:S1706-S1711.doi:10.1016/j.arabjc.2012.04.052.
[12]NILTHARACH A,KITYAKARN S,WORAYINGYONG A,et al.Structural Characterizations of Sol-gel Synthesized TiO2 and Ce/TiO2 Nanostructures[J].Phys B:Condens Matter,2012,407(15):2915-2918.doi:10.1016/j.physb.2011.08.108
[13]MO L B,BAI Y,XIANG Q Y,et al.Band Gap Engineering of TiO2 Through Hydrogenation[J].Appl Phys Lett,2014,105(20):202114.doi:10.1063/1.4902445