在线阅读 --自然科学版 2020年5期《带有团簇结构的振子电网频率反馈控制》
带有团簇结构的振子电网频率反馈控制--[在线阅读]
杨丽新, 李清清, 武少琪
陕西科技大学 文理学院, 陕西 西安 710021
起止页码: 403--407页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.05.006
摘要
以非线性耦合振子作节点的电力网络为研究对象,研究了在不改变原始网络拓扑结构的条件下,根据实际需要调整电网的同步能力.通过对电网动力学网络的节点施加反馈控制项进一步调整反馈增益的取值,可以不断调整对振子电网同步形式的改变;所得结果表明,不断增加反馈增益,整体网络对应的同步能力相应提高.所得结果可为实际电网的规划和设计提供一定的理论指导.

Dynamical Analysis on Oscillatory Power Network with Community Structure
YANG Lixin, LI Qingqing, WU Shaoqi
School of Arts and Sciences, Shaanxi University of Science and Technology, Shaanxi Xi'an 710021, China
Abstract:
Based on the power network consisting of nonlinear coupled oscillators,we studied on how frequency-control scheme adjusts the reliable synchronization of the oscillatory power network with different topologies,when the original topological structure keeps unchanged.We have added feedback term to the dynamical equations of power network to achieve synchronization.Furthermore,adjusting synchronizability can be realized via changing feedback control gains.The simulation results show that the proposed control strategies effectively achieve the feedback control in adjusting the synchronizability in an oscillatory power network.The results can provide theoretical guidance for designing power network.

收稿日期: 2019-12-22
基金项目: 国家自然科学青年基金(11702195);大学生创新创业训练项目(201910708012)

参考文献:
[1]FILATRELLA G,NIELSEN A H,PEDERSEN N F.Phase Model with Feedback Control for Power Grids[J].Eur Phys J B,2008,61:485-492.doi:10.7566/Jpsj.82.094007
[2]POURBEIK P,KUNDUR P S,TAYLOR C W.The Anatomy of a Power Grid Blackout-root Causes and Dynamics of Recent Major Blackouts[J].Power and Energy Magazine,IEEE,2006,4(2):22-29.doi:10.1109/MPAE.2006.1687814
[3]DELELLIS P,BERNARDO di M.On Adaptive Bounded Synchronization in Power Network Models[J].IEEE Int Symp Cricuits Syst,2012,6(1):1640-1643.doi:1109/ISCAS.2012.6271570
[4]LOZANO S,BUXNA L,DIAZ-GUILERA A.Role of Network Topology in the Synchronization of Power Systems[J].Eur Phys J B,2012,85:231-239.doi:10.1140/Epjb/E2012-30209-9
[5]杨丽新.社团结构改变对振子网络同步行为的影响[J].河北师范大学学报(自然科学版),2018,42(5):392-395.doi:10.13763/j.cnki.jhebnu.nse.2018.05.005 YANG Lixin.The Impact of Topology Structure on Dynamical Behavior of Oscillatory Complex Network[J].Journal of Hebei Normal University(Natural Science),2018,42(5):392-395.
[6]WITTHAUT D,TIMME M.Braess's Paradox in Oscillator Networks,Desynchronization and Power Outage[J].New Journal of Physics,2012,14:083036.doi:10.1088/1367-2630/14/8/083036
[7]KELLY D,GOTTWALD G A.On the Topology of Synchrony Optimized Networks of a Kuramoto-model Withnon-identical Oscillators[J].Chaos,2011,21:025110.doi:10.1063/1.3590885
[8]WU Jiajing,WU Taocheng,XIA Yongxiang.Abnormal Phenomenon in Robustness of Complex Networks with Heterogeneous Node Functions[J].Physica A,2018,506:451-461.doi:10.1016/J.PhysA.2018.04.090