在线阅读 --自然科学版 2020年5期《具有垂直传染的SIS传染病模型的稳定性及分岔分析》
具有垂直传染的SIS传染病模型的稳定性及分岔分析--[在线阅读]
周效良, 陈雨青, 张渝曼, 徐江明
岭南师范学院 数学与统计学院, 广东 湛江 524048
起止页码: 375--379页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.05.002
摘要
研究了一类具有垂直传染的SIS传染病模型的稳定性及分岔性.讨论了平衡点的类型和稳定性对系数参数的依赖关系,通过中心流形定理得到了平衡点的跨临界分岔条件,给出了分岔的生物学解释及传染病的防控措施.

Stability and Bifurcation Analysis of SIS Epidemic Model with Vertical Transmission
ZHOU Xiaoliang, CHEN Yuqing, ZHANG Yuman, XU Jiangming
School of Mathematics and Statistics, Lingnan Normal University, Guangdong Zhanjiang 524048, China
Abstract:
The stability and bifurcation analysis of a class of SIS epidemic model with vertical transmission are discussed in this paper.Firstly,the dependence of the type and stability of equilibrium points on the parameters of coefficients is discussed.Then,the transcritical bifurcation conditions of the equilibrium points are obtained through the central manifold theorem.Finally,the biological explanation of the bifurcation and the prevention and control measures of infectious diseases are given.

收稿日期: 2019-11-25
基金项目: 国家自然科学基金(11961021);广东省攀登计划项目(pdjha0304/pdjh2019b0279);全国大学生创新创业训练计划项目(201910579725)

参考文献:
[1]ALLEN E J.Stochastic Differential Equations and Persistence Time for Two Interacting Populartions[J].Dynamics of Continuous,Discrete and Impulsive Systems Series A:Mathematical Analysis,1999,5(1):271-281.doi:10.1080/026811199282092
[2]XIAO Y,CHEN L,BOSCH F V D.Dynamical Behavior for a Stage-structured SIR Infectious Disease Model[J].Nonlinear Analysis:Real World Applications,2002,3(2):175-190.doi:10.1016/S1468-1218(01)00021-9
[3]ZHANG X B,HUO H F,SUN X K,et al.The Differential Susceptibility SIR Epidemic Model with Stage Structure and Pulse Vaccination[J].Nonlinear Analysis:Real World Applications,2010,11(4):2634-2646.doi:10.1016/j.nonrwa.2009.09.011
[4]KELATLHEGILE G R,KGOSIMORE M.Bifurcation Analysis of Vertical Transmission Model with Preventive Strategy[J].Journal of the Egyptian Mathematical Society,2016,24(3):492-498.doi:10.1016/j.joems.2015.10.001
[5]LUNGU E,KGOSIMORE M.The Effects of Vertical Transmission on the Spread of HIV/AIDS in the Presence of Treatment[J].Mathematical Biosciences and Engineering,2017,3(2):297-312.doi:10.3934/mbe.2006.03.297
[6]CAI L,LI X,GHOSH M,et al.Stability Analysis of An HIV/AIDS Epidemic Model with Treatment[J].Journal of Computational and Applied Mathematics,2009,229(1):313-323.doi:10.1016/j.cam.2008.10.067
[7]ZHANG Y,JIA J.Hopf Bifurcation of an Epidemic Model with a Nonlinear Birth in Population and Vertical Transmission[J].Applied Mathematics and Computation,2014,230(4):164-173.doi:10.1016/j.amc.2013.12.084
[8]ZHANG X B,CHANG S.Qualitative Study of Stochastic SIS Epidemic Model with Vertical Transmission[J].Statistical Mechanics and Its Applications,2018,505(C):805-817.doi:10.1016/j.physa.2018.04.022
[9]YANG,BERETTA E.Global Qualitative Analysis of a Ratio-dependent Predator-prey System[J].Journal of Mathematical Biology,1998,36(4):389-406.doi:10.1007/s002850050105
[10]WIGGINS S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].New York:Springer,1990.doi:10.1002/crat.2170260722