在线阅读 --自然科学版 2020年4期《三维完整原始方程组对边界参数的收敛性》
三维完整原始方程组对边界参数的收敛性--[在线阅读]
李远飞1, 肖胜中2, 石金诚1
1. 广东财经大学 华商学院 数据科学学院, 广东 广州 511300;
2. 广东农工商职业技术学院 科研处, 广东 广州 510507
起止页码: 277--287页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.04.001
摘要
考虑了一个经常被用于天气预报和气候变化的完整原始方程组,即三维原始方程与温度和盐度方程耦合,并受外力作用.运用微分不等式和能量估计的方法,得到了方程组解的先验界,并证明了方程组对边界参数的收敛性.

The Convergence of the 3D Full Primitive Equations on the Boundary Parameter
LI Yuanfei1, XIAO Shengzhong2, SHI Jincheng1
1. School of Data Science, Huashang College, Guangdong University of Finance & Economics, Guangdong Guangzhou 511300, China;
2. Research Administration, Guangdong AIB College, Guangdong Guangzhou 510507, China
Abstract:
We consider the full primitive equations,i.e.three dimensional primitive equations coupled to the temperature and salinity equations and subject to outer forces,which are often used in weather forecast and climate change.By using the technique of differential inequality and the method of energy estimation,the priori bounds of solutions to the equations are obtained,and the convergence of the equations on the boundary parameter is proved.

收稿日期: 2019-11-08
基金项目: 国家自然科学基金(11371175);广东省自然科学基金(2017A030313037);广东普通高校重点项目(自然科学)(2019KZDXMD42)

参考文献:
[1]RICHARDSON L F.Weather Prediction by Numerical Press[M].Cambridge:Cambridge University Press,1922.
[2]LIONS J L,TEMAM R,WANG S.New Formulations of the Primitive Equations of Atmosphere and Applications[J].Nonlinearity,1992,5(2):237-288.doi:10.1088/0951-7715/5/2/001
[3]LIONS J L,TEMAM R,WANG S.On the Equations of the Large-scale Ocean[J].Nonlinearity,1992,5(5):1007-1053.doi:10.1088/0951-7715/5/5/002
[4]LIONS J L,TEMAM R,WANG S.Mathematical Theory for the Coupled Atmosphere-ocean Models[J].J Math Pures Appl,1995,74:105-163.
[5]LIONS J L,TEMAM R,WANG S.Models of the Coupled Atmosphere and Ocean[J].Comput Mech Adv,1993(1):1-54.
[6]郭柏灵,黄代文,黄春研.大气、海洋动力学中一些非线性偏微分方程的研究[J].中国科学:物理学力学天文学,2014,44(12):1275-1285.doi:10.1360/SSPMA2014-00114 GUO Boling,HUANG Daiwen,HUANG Chunyan.Study on Some Partial Differential Equations in the Atmospheric and Oceanic Dynamics[J].Scientia Sinica:Physica,Mechanica and Astronomica,2014,44(12):1275-1285.
[7]GUO B L,HUANG D W.On the 3D Viscous Primitive Equations of the Large-scale Atmosphere[J].Acta Math Sci,2009,29(4):846-866.doi:10.1016/s0252-9602(09)60074-6
[8]GUO B L,HUANG D W.Existence of the Universal Attractor for the 3D Viscous Primitive Equations of Large-scale Moist Atmosphere[J].J Differential Equations,2011,251(3):457-491.doi:10.1016/j.jde.2011.05.010
[9]SUN J Y,CUI S B.Sharp Well-posedness and Ill-posedness of the Three-dimensional Primitive Equations of Geophysics in Fourier-Besov Spaces[J].Nonlinear Analysis:Real World Applications,2019,4:445-465.doi:10.1016/j.nonrwa.2019.02.003
[10]HIEBER M,HUSSEIN A,KASHIWABARA T.Global Strong Lp Well-posedness of the 3D Primitive Equations with Heat and Salinity Diffusion[J].J Differential Equations,2016,261:6950-6981.doi:10.1016/j.jde.2016.09.010
[11]YOU B,LI F.Global Attractor of the Three-dimensional Primitive Equations of Large-scale Ocean and Atmosphere Dynamics[J].Z Angew Math Phys,2018,69:114-118.doi:10.1007/s00033-018-1007-9
[12]CHIODAROLI E,MICHALEK M.Existence and Non-uniqueness of Global Weak Solutions to Inviscid Primitive and Boussinesq Equations[J].Commun Math Phys,2017,353:1201-1216.doi:10.1007/s00220-017-2846-5
[13]SUN J Y,YANG M.Global Well-posedness for the Viscous Primitive Equations of Geophysics[J].Boundary Value Problems,2016,2016:21-26.doi:10.1186/s13661-016-0526-6
[14]GUO B L,HUANG D W,WANG W.Diffusion Limit of 3D Primitive Equations of the Large-scale Ocean Under Fast Oscillating Random Force[J].J Differential Equations,2015,259(6):2388-2407.doi:10.1016/j.jde.2015. 03.041
[15]LI F,YOU B.Pullback Exponential Attractors for the Three Dimensional Non-autonomous Navier-stokes Equations with Nolinesr Damping[J].Discrete and Continuous Dynamical Systems B,2020,25(1):55-80.doi:10.3934/dcdsb.2019172
[16]李远飞.原始方程组对粘性系数的连续依赖性[J].山东大学学报(理学版),2019,54(12):12-23.doi:10.6040/j.issn.1671-9352.0.2019.539 LI Yuanfei.Continuous Dependence on the Viscosity Coefficient for the Primitive Equations[J].Journal of Shandong University(Natural Science),2019,54(12):12-23.
[17]李远飞.大尺度海洋大气动力学三维黏性原始方程对边界参数的连续依赖性[J].吉林大学学报(理学版),2019,57(5):1053-1059.doi:10.13413/j.cnki.jdxblxb.2019038 LI Yuanfei.Continuous Dependence on Boundary Parameters for Three-dimensional Viscous Primitive Equation of Large-scale Ocean Atmospheric Dynamics[J].Journal of Jilin University(Natural Science),2019,57(5):1053-1059.
[18]PEDLOSKY J.Geophysical Fluid Dynamics[M].New York:Springer-verlag,1987.doi:10.1007/978-1-4612-4650-3
[19]HARDY C H,LITTLEWOOD J E,POLYA G.Inequalities[M].Cambridge:Cambridge University Press,1953.
[20]MITRONOVIC D S.Analytical Inequalities[M].[S.L.]:Springer-verlag Atlantis Press,1970.doi:10.1007/978-3-642-99970-3
[21]ADAMSRA.Sobolev Spaces[M].New York:Academic Press,1975.doi:10.1007/978-3-642-61566-5_2
[22]LIN C,PAYNE L E.Continuous Dependence on the Soret Coefficient for Double Diffusive Convection in Darcy Flow[J].J Math Anal Appl,2008,342:311-325.doi:10.1016/j.jmaa.2007.11.036
[23]李远飞.海洋动力学中二维粘性原始方程组解对热源的收敛性[J].应用数学和力学,2020,41(3):339-352.doi:10.21656/1000-0887.400176. LI Yuanfei.Convergence Results on the Heat Source for the 2D Viscous Primitive Equations in Ocean Dynamics[J].Applied Mathematics and Mechanics,2020,41(3):339-352.