在线阅读 --自然科学版 2020年3期《纳米柠檬酸铁脂质体的体外降解及释放研究》
纳米柠檬酸铁脂质体的体外降解及释放研究--[在线阅读]
耿丽娜, 张茹, 李文新, 孙凯玥, 郝振芳
河北师范大学 化学与材料科学学院, 河北 石家庄 050024
起止页码: 243--250页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.03.009
摘要
采用薄膜旋转蒸发-超声法制备了纳米柠檬酸铁脂质体(FAC-Lip).探究了光照、温度、pH对FAC-Lip降解的影响,采用零级动力学和一级动力学模型判断降解模型,计算出半衰期(t1/2)和降解速率常数(k);采用透析法测定了FAC-Lip和游离柠檬酸铁(Free-FAC)在模拟胃液中的稳定性和血浆中的释放情况.结果表明:FAC-Lip的降解符合一级动力学模型,光照、高温、pH过低或过高都会加速FAC-Lip的降解;在模拟胃液中FAC-Lip具有缓释性,且比Free-FAC稳定性好;在血浆中FAC-Lip也具有缓释性,降解属于双相动力学模型.

Degradation and Release Study of Nano-ferric Citrate Liposomes
GENG Lina, ZHANG Ru, LI Wenxin, SUN Kaiyue, HAO Zhenfang
College of Chemistry and Material Science, Hebei Normal University, Hebei Shijiazhuang 050024, China
Abstract:
Ferric citrate liposome(FAC-Lip) was prepared using a rotary-evaporated film-ultrasonication method.The effects of light,temperature,and pH on the degradation of FAC-Lip were explored.Zero- and first- order kinetic models were used to determine the degradation model,both half-life(t1/2) and degradation rate constant(k) were calculated.The stability of FAC-Lip and free ferric citrate(Free-FAC) in simulated gastric fluid and plasma were determined by dialysis method.The results showed that the degradation of FAC-Lip conformed to the first-order kinetic model,and the degradation of FAC-Lip would be accelerated when it was exposed to light,high temperature,low or high pH,respectively.FAC-Lip in simulated gastric juice was sustained release and had better stability than Free-FAC.FAC-Lip was also sustained release in plasma and belong to a biphasic kinetic model.

收稿日期: 2020-02-24
基金项目: 国家自然科学基金(31201305);河北省自然科学基金(B2019205054)

参考文献:
[1]CAMASCHELLA C,STRATI P.Recent Advances in Iron Metabolism and Related Disorders[J].Internal and Emergency Medicine,2010,5(5):393-400.doi:10.1007/s11739-010-0387-4
[2]JONKER F A M,TE P E,BATES I,et al.Iron Deficiency and Susceptibility to Infection in Children in Sub-Saharan Africa,Guideline Dilemmas[J].British Journal of Haematology,2017,177(6):878-883.doi:10.1111/bjh.14593
[3]VON H S,EBNER N,EVERTZ R,et al.Iron Deficiency in Heart Failure:An Overview[J].JACC Heart Failure,2019,7(1):36-46.doi:10.1016/j.jchf.2018.07.015
[4]WAN D,WU Q H,NI H J,et al.Treatments for Iron Deficiency (Id):Prospective Organic Iron Fortification[J].Current pharmaceutical Design,2019,25(3):325-332.doi:10.2174/1381612825666190319111437
[5]FATHY M M,FAHMY H M,BALAH A M M,et al.Magnetic Nanoparticles-loaded Liposomes as a Novel Treatment Agent for Iron Deficiency Anemia:In Vivo Study[J].Life Sciences,2019,234:116787-116798.doi:10.1016/j.lfs.2019.116787
[6]BOONE S,POWERS J M,GOODGAME B,et al.Identification and Management of Iron Deficiency Anemia in the Emergency Department[J].The Journal of Emergency Medicine,2019,57(5):637-645.doi:10.1016/j.jemermed.2019.08.052
[7]赵聪,黄浩,陈贵堂.缺铁性贫血与补铁剂研究概况[J].食品安全质量检测学报,2016,7(8):3216-3221.doi:10.19812/j.cnki.jfsq11-5956/ts.2016.08.037 ZHAO Cong,HUANG Hao,CHEN Guitang.Research Progress on Iron Deficiency Anemia and New Types of Iron Supplement Agents[J].Journal of Food Safety and Quality,2016,7(8):3216-3221.
[8]张小雯.多种铁剂治疗小儿缺铁性贫血的临床疗效差异比较[J].当代医学,2017,23(23):133-134.doi:10.3969/j.issn.1009-4393.2017.23.059 ZHANG Xiaowen.Comparison of Clinical Efficacy of Multiple Iron Agents in Treating Iron Deficiency Anemia in Children[J].Contemporary Medicine,2017,23(23):133-134.
[9]九姑娘.缺铁性贫血及其不同治疗方法的疗效及不良反应研究进展[J].中国继续医学教育,2018,10(28):113-114.doi:10.3969/j.issn.1674-9308.2018.28.055 JIU Guniang.Research on the Progress of Iron Deficiency Anemia and Its Different Therapeutic Methods[J].China Continuing Medical Education,2018,10(28):113-114.
[10]WANG S,LI W X,SUN K Y,et al.Study of Release Kinetics and Degradation Thermodynamics of Ferric Citrate Liposomes[J].Chemistry and Physics of Lipids,2019,225:104811-104817.doi:10.1016/j.chemphyslip.2019.104811
[11]PENG S F,ZOU L Q,LIU W L,et al.Hybrid Liposomes Composed of Amphiphilic Chitosan and Phospholipid:Preparation,Stability and Bioavailability as a Carrier for Curcumin[J].Carbohydrate Polymers,2017,156:322-332.doi:10.1016/j.carbpol.2016.09.060
[12]WANG X,LIU L,XIA S,et al.Sodium Carboxymethyl Cellulose Modulates the Stability of Cinnamaldehyde-loaded Liposomes at High Ionic Strength[J].Food Hydrocolloids,2019,93:10-18.doi:10.1016/j.foodhyd.2019.02.004
[13]TAI K D,RAPPOLT M,MAO L K,et al.The Stabilization and Release Performances of Curcumin-loaded Liposomes Coated by High and Low Molecular Weight Chitosan[J].Food Hydrocolloids,2020,99:105355-105364.doi:10.1016/j.foodhyd.2019.105355
[14]周欣羽,王艳芝,魏守刚,等.齐多夫定棕榈酸酯及其脂质体在小鼠各组织中的降解动力学[J].沈阳药科大学学报,2008,25(1):6-9.doi:10.14066/j.cnki.cn21-1349/r.2008.01.016 ZHOU Xinyu,WANG Yanzhi,WEI Shougang,et al.Degradation Kinetics of Azidothymidine Palmitate in Different Homogenate of Mice[J].Journal of Shenyang Pharmaceutical University,2008,25(1):6-9.
[15]张伟明,邓英杰,顾吉晋,等.酒石酸长春瑞滨及其脂质体中药物的降解动力学研究[J].中国医药导报,2009,6(23):23-24. ZHANG Weiming,DENG Yingjie,GU Jiji,et al.The Research on Degradation Kinetics of NVB Solution and Its Liposome[J].China Medical Herald,2009,6(23):23-24.
[16]ZHOU F,XU T,ZHAO Y J,et al.Chitosan-coated Liposomes as Delivery Systems for Improving the Stability and Oral Bioavailability of Acteoside[J].Food Hydrocolloids,2018,83:17-24.doi:10.1016/j.foodhyd.2018.04.040
[17]TAI K D,RAPPOLT M,HE X Y,et al.Effect of Beta-sitosterol on the Curcumin-loaded Liposomes:Vesicle Characteristics,Physicochemical Stability,in Vitro Release and Bioavailability[J].Food Chemistry,2019,293:92-102.doi:10.1016/j.foodchem.2019.04.077
[18]PREISS M R,HART A,KITCHENS C,et al.Hydrophobic Nanoparticles Modify the Thermal Release Behavior of Liposomes[J].The Journal of Physical Chemistry B,2017,121:5040-5047.doi:10.1021/acs.jpcb.7b01702
[19]CHENG C,WU Z H,MCCLEMENTS D J,et al.Improvement on Stability,Loading Capacity and Sustained Release of Rhamnolipids Modified Curcumin Liposomes[J].Colloids and Surfaces B:Biointerfaces,2019,183:110460-110469.doi:10.1016/j.colsurfb.2019.110460
[20]JAIN A,JAIN S K.In Vitro Release Kinetics Model Fitting of Liposomes:An Insight[J].Chemistry and Physics of Lipids,2016,201:28-40.doi:10.1016/j.chemphyslip.2016.10.005
[21]SADATI B E,GHAEDI M,ABBASPOUR M,et al.Curcumin Loaded Nanostructured Lipid Carriers:In Vitro Digestion and Release Studies[J].Polyhedron,2019,164:113-122.doi:10.1016/j.poly.2019.02.002
[22]江敏,邓小丽,傅彦妍,等.松果菊苷脂质体温敏凝胶的制备及体外释放度的考察[J].时珍国医国药,2019,30(5):1132-1135.doi:10.3969/j.issn.1008-0805.2019.05.035 JIANG Min,DENG Xiaoli,FU Yanyan.et al.Preparation of Echinacoside Liposome Temperature-sensitive Gel and Investigation of Its in Vitro Release[J].Lishizhen Medicine and Materia Medica Research,2019,30(5):1132-1135.
[23]冯玲玲,李楠,谭裕君.Box-behnken优化黄芩苷脂质体的制备工艺及体外释放模型拟合的研究[J].中药材,2017,40(12):2902-2907.doi:10.13863/j.issn.1001-4454.2017.12.036 FENG Lingling,LI Nan,TAN Yujun.Preparation Process and in Vitro Release Model of Baicalin Liposomes Optimized by Box-behnken-response Surface Methodology Design[J].Journal of Chinese Medicinal Materials,2017,40(12):2902-2907.
[24]李妮娜,耿丽娜,王琳,等.铁脂质体/水分配系数测定及影响因素考察[J].物理化学学报,2015,31(11):2043-2048.doi:10.3866/pku.whxb201509141 LI Nina,GENG Lina,WANG Lin,et al.Determination of Iron Liposome/water Partition Coefficients and Identification of Influencing Factors[J].Acta Physico-chimica Sinica,2015,31(11):2043-2048.
[25]元琳琳,王琳,李文新,等.膜材比例对柠檬酸铁脂质体稳定性的影响[J].科学通报,2016,61(24):2717-2723.doi:10.1360/n972016-00581 YUAN Linlin,WANG Lin,LI Wenxin,et al.Membrane Material Ratio Influence to the Stability of Ferric Citrate Liposome[J].Chinese Science Bulletin,2016,61(24):2717-2723.
[26]YUAN L,GENG L,GE L,et al.Effect of Iron Liposomes on Anemia of Inflammation[J].International Journal of Pharmaceutics,2013,454:82-89.doi:10.1016/j.ijpharm.2013.06.078