在线阅读 --自然科学版 2020年3期《Ca2+离子取代对SrRuO3结构与磁性的影响》
Ca2+离子取代对SrRuO3结构与磁性的影响--[在线阅读]
张文颖, 甄聪棉, 侯登录
河北师范大学 物理学院, 河北 石家庄 050024
起止页码: 215--220页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.03.005
摘要
通过Ca2+取代A位的Sr2+,研究SrRuO3的结构与磁性的变化.结果表明,随Ca2+取代量的增加,晶格常数减小,正交畸变更加明显,饱和磁化强度和居里温度均随之减小,最终铁磁性的SrRuO3变化到顺磁性的CaRuO3.临界指数β拟合结果表明,SrRuO3的磁性可由平均场模型解释.β值随Ca2+取代量的增加而增加.实验证实了SrRuO3中既有巡游磁性又有局域磁性,且与相关理论研究结果一致.

Effects of Ca2+ Ion Substitution on the Structure and Magnetism of SrRuO3
ZHANG Wenying, ZHEN Congmian, HOU Denglu
College of Physics, Hebei Normal University, Hebei Shijiazhuang 050024, China
Abstract:
The structural and magnetic changes of SrRuO3 were studied by substituting Ca2+ for Sr2+ at A site.The results show that with the increase of Ca substitution,the lattice constant decreases,the orthogonal distortion becomes more obvious,the saturation magnetization and Curie temperature TC decrease,and finally the ferromagnetic SrRuO3 changes to paramagnetic CaRuO3.The critical exponent β is obtained by fitting the experimental data,indicating that the magnetic properties of SrRuO3 can be explained by the mean field model.The value of β increases with the substitution x of Ca2+ ion.The co-existence of itinerant and local magnetism in SrRuO3 has been confirmed by experiments and is consistent with the recent theoretical results.

收稿日期: 2020-01-08
基金项目: 河北省自然科学基金(A2018205144)

参考文献:
[1]GUPTA R,PRAMANIK A K.Site Dilution in SrRuO3:Effects on Structural and Magnetic Properties[J].Journal of Physics:Condensed Matter,2017,29(11):115801.doi:10.1088/1361-648X/aa5532
[2]MAITI K,SINGH R S.Evidence Against Strong Correlation in 4d Transition Metal Oxides,CaRuO3 and SrRuO3[J].Phys Rev B,2005,71(16):161102.doi:10.1103/PhysRevB.71.161102
[3]TAKIZAWA M,TOYOTA D,WADATI H,et al.Manifestation of Correlation Effects in the Photoemission Spectra of Ca1-xSr<em>xRuO3[J].Phys Rev B,2005,72(6):060404.doi:10.1103/PhysRevB.72.060404
[4]KIM J,KIM J Y,PARK B G,et al.Photoemission and X-ray Absorption Study of the Electronic Structure of SrRu1-xTi<em>xO3[J].Phys Rev B,2006,73(23):235109.doi:10.1103/PhysRevB.73.235109
[5]SHAI D E,ADAMO C,SHEN D W,et al.Quasiparticle Mass Enhancement and Temperature Dependence of the Electronic Structure of Ferromagnetic SrRuO3 Thin Films[J].Phys Rev Lett,2013,110(8):087004.doi:10.1103/PhysRevLett.110.087004
[6]JEONG D W,CHOI H C,KIM C H,et al.Temperature Evolution of Itinerant Ferromagnetism in SrRuO3 Probed by Optical Spectroscopy[J].Phys Rev Lett,2013.110(24):247202.doi:10.1103/PhysRevLett.110.247202
[7]KIM M,MIN B I.Nature of Itinerant Ferromagnetism of SrRuO3:A DFT+DMFT Study[J].Phys Rev B,2015,91(20):205116.doi:10.1103/PhysRevB.91.205116
[8]STANLE Y,EUGENE H.Introduction to Phase Transitions and Critical Phenomena[M].Oxford:Oxford University Press,1972:927-929.doi:10.1119/1.1986710
[9]FUCHS D,WISSINGER M,SCHMALIAN J,et al.Critical Scaling Analysis of the Itinerant Ferromagnet Sr1-xCa<em>xRuO3[J].Phys Rev B,2014,89(17):174405.doi:10.1103/PhysRevB.89.174405
[10]JIN C Q,ZHOU J S,GOODENOUGH J B,et al.High-pressure Synthesis of the Cubic Perovskite BaRuO3 and Evolution of Ferromagnetism in ARuO3(A=Ca,Sr,Ba) Ruthenates[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(20):7115-7119.doi:10.1073/Pnas.0710928105
[11]KITTEL C.Introduction to Solid State Physics[M].New York:Wiley,2012:43-45.
[12]NADGORNY B,OSOFSKY M S,SINGH D J,et al.Measurements of Spin Polarization of Epitaxial SrRuO3 Thin Films[J].Appl Phys Lett,2003,82(3):427-429.doi:10.1063/1.1539551
[13]RAYCHAUDHURI P,MACKENZIE A P,REINER J W,et al.Transport Spin Polarization in SrRuO3 Measured Through Point-contact Andreev Reflection[J].Phys Rev B,2003,67(2):253-263.doi:10.1103/PhysRevB.67.020411
[14]CHANCHAL S,SAMAL D,KUMAR P S A,et al.Structural-modulation-driven Low-temperature Glassy Behavior in SrRuO3[J].Phys Rev B,2012,85(22):224426.doi:10.1103/PhysRevB.85.224426
[15]WOHLFARTH E P,RHODES P.The Effective Curie-weiss Constant of Ferromagnetic Metals and Alloys[J].Proceedings of the Royal Society a Mathematical Physical and Engineering Sciences,1962,23(10):247-258.doi:10.1051/jphysrad.019620023010072901