在线阅读 --自然科学版 2020年2期《eHR神经元模型分岔分析与隐藏放电控制》
eHR神经元模型分岔分析与隐藏放电控制--[在线阅读]
张薇1, 安新磊1, 乔帅1, 王红梅1, 杨天宇2
1. 兰州交通大学 数理学院, 甘肃 兰州 730070;
2. 北京交通大学 电子工程学院, 北京 100044
起止页码: 123--129页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.02.005
摘要
以eHR模型为研究对象,利用非线性动力学理论及数值仿真方法对eHR模型的动力学特性进行了研究,并对eHR模型施加Washout滤波器以实现对该模型的隐藏放电控制.通过理论分析得出,eHR模型存在亚临界Hopf分岔点,并且在Hopf分岔点附近存在隐藏吸引子.对系统施加Washout滤波器使得系统的亚临界Hopf分岔转化为超临界Hopf分岔,由此可以消除系统的隐藏放电行为,进一步控制神经元系统的稳定区域.

Analysis on Bifurcation and Hidden Discharge Control of eHR Neuron Model
ZHANG Wei1, AN Xinlei1, QIAO Shuai1, WANG Hongmei1, YANG Tianyu2
1. School of Mathematics and Physic, Lanzhou Jiaotong University, Gansu Lanzhou 730070, China;
2. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
Abstract:
The hidden firing behavior of neurons for the modulation of neurons in the brain were studied.Taking eHR model as the research object,the dynamic characteristics of eHR model are analyzed by using nonlinear dynamics theory and numerical simulation method.By applying Washout filter to eHR model,the hidden discharge control is realized.Theoretical analysis show that the eHR model has subcritical Hopf bifurcation point,and there are hidden attractors near Hopf bifurcation point.By applying Washout filter to the system,the subcritical Hopf bifurcation point of the system is converted to supercritical Hopf bifurcation point,and thus the hidden discharge behavior of the system is eliminated and the stable region of neural system is controlled.

收稿日期: 2019-09-18
基金项目: 国家自然科学基金(11962012);兰州交通大学研究生教育改革项目(JG201816)

参考文献:
[1]吕密.电磁辐射下神经元的建模及其动力学分析[D].兰州:兰州理工大学,2017. LYU Mi.Modeling and Dynamic Analysis of Neurons Under Electromagnetic Radiation[D].Lanzhou:Lanzhou University of Technology,2017.
[2]HODGKIN A L,HUXLEY A F.A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve[J].The Journal of Physiology,1952,117(4):500-544.doi:10.1113/jphysiol.1952.sp004764
[3]HINDMARSH J L,ROSE R M.A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations[J].Proceedings of the Royal Society B:Biological Sciences,1984,221(1222):87-102.doi:10.1098/rspb.1984.0024
[4]MEGAM-NGOUONKADI E B,FOTSIN H B,LOUODOP-FOTSO P,et al.Bifurcations and Multistability in the Extended Hindmarsh-rose Neuronal Oscillator[J].Chaos,Solitons & Fractals,2016,85:151-163.doi:10.1016/j.chaos.2016.02.001
[5]杨琼.几类神经元模型的动力学分析[D].兰州:兰州交通大学,2018. YANG Qiong.Dynamic Analysis of Several Kinds of Neuron Models[D].Lanzhou:Lanzhou Jiaotong University,2018.
[6]POSTNOVA S,VOIGT K,BRAUN H A.Neural Synchronization at Tonic-to-bursting Transitions[J].Journal of Biological Physics,2007,33(2):129-143.doi:10.1007/s10867-007-9048-s
[7]SCHWEMMER M A,LEWIS T J.The Robustness of Phase-locking in Neurons with Dendro-dendritic Electrical Coupling[J].Journal of Mathematical Biology,2014,68(1/2):303-340.doi:10.1007/s00285-012-0635-5
[8]MARIS E,FRIES P,EDE F V.Diverse Phase Relations Among Neuronal Rhythms and Their Potential Function[J].Trends in Neurosciences,2016,39(2):86-99.doi:10.1016/j.tins.2015.12.004
[9]乔帅,张莉,安新磊,等.电磁辐射下HR神经元模型的分岔分析[J].河北师范大学学报(自然科学版),2019,43(4):122-128.doi:10.13763/j.cnki.jhebnu.nse.2019.04.005 QIAO Shuai,ZHANG Li,AN Xinlei,et al.Bifurcation Analysis of HR Neuron Model Under Electromagnetic Radiation[J].Journal of Hebei Normal University (Natural Science),2019,43(4):122-128.
[10]李佳佳,吴莹,独盟盟.电磁辐射诱发神经元放电节律转迁的动力学行为研究[J].物理学报,2015,64(3):224-230.doi:10.7498/aps.64.030503 LI Jiajia,WU Ying,DU Mengmeng.Study on the Dynamic Behavior of Electromagnetism Radiation-induced Neuronal Firing Rhythm Transition[J].Acta Physica Sinica,2015,64(3):224-230.
[11]袁春华.神经元动力学分析与放电特性的研究[D].天津:天津大学,2017. YUAN Chunhua.Dynamic Analysis and Discharge Characteristics of Neurons[D].Tianjin:Tianjin University,2017.
[12]袁春华,王江.神经元模型的稳定性分析与Hopf分岔控制[J].振动工程学报,2015,28(1):52-58.doi:10.16385/j.cnki.issn.1004-4523.2015.01.007 YUAN Chunhua,WANG Jiang.Stability Analysis and Hopf Bifurcation Control of Neuron Model[J].Journal of Vibration Engineering,2015,28(1):52-58.
[13]XIAO M,ZHENG W X,CAO J.Bifurcation and Control in a Neural Network with Small and Large Delays[J].Neural Networks,2013,44:132-142.doi:10.1016/j.neunet.2013.03.016
[14]ISRAEL N.Stability Switching and Hopf Bifurcation in a Multiple-delayed Neural Network with Distributed Delay[J].Journal of Mathematical Analysis and Applications,2013,407(1):141-146.doi:10.1016/j.jmaa.2013.05.021