在线阅读 --自然科学版 2020年1期《TNTAs/g-C3N4的制备及光催化降解罗丹明B》
TNTAs/g-C3N4的制备及光催化降解罗丹明B--[在线阅读]
金佳莹, 李法齐, 陈汝芬
河北师范大学 化学与材料科学学院, 河北 石家庄 050024
起止页码: 43--51页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.01.007
摘要
采用水热法制备了二氧化钛纳米管(TNTAs),以尿素为前驱体采用煅烧法制备了g-C3N4,然后通过超声制备了TNTAs/g-C3N4复合物,并研究了复合物对罗丹明B (RhB)的光催化降解活性.结果表明:TNTAs与g-C3N4的复合,增强了对可见光的利用率,复合物中异质结的形成,有效抑制了催化剂中光生电子和空穴对的复合,TNTAs/g-C3N4复合物光催化降解RhB的性能得到了明显提高,其中TNTAs/g-C3N4 1:2具有最高的光催化降解活性.

Preparation of TNTAs/g-C3N4 and Photocatalytic Degradation Activity for Rhodamine B
JIN Jiaying, LI Faqi, CHEN Rufen
College of Chemistry and Material Science, Hebei Normal University, Hebei Shijiazhuang 050024, China
Abstract:
In this paper,titanium dioxide nanotubes (TNTAs) were prepared by hydrothermal method,g-C3N4 was prepared by calcination method using urea as precursor.Then TNTAs/g-C3N4 composites were prepared by ultrasonication,and the photocatalytic degradation activity for rhodamine B (RhB) was studied.The results showed that the combination of TNTAs and g-C3N4 enhances the utilization of visible light,and the formation of heterojunction in the composite,effectively inhibits the composite of photogenerated electrons and hole pairs in the catalyst.The photocatalytic degradation activity of RhB by TNTAs/g-C3N4 complex was significantly improved,and TNTAs/g-C3N4-1:2 had the highest photocatalytic activity.

收稿日期: 2019-10-11
基金项目: 国家自然科学基金(21477032)

参考文献:
[1]WANG W,DING M,MA L,et al.Fe2O3 Nanoparticles Encapsulated in TiO2 Nanotubes for Fischer-tropsch Synthesis:The Confinement Effect of Nanotubes on the Catalytic Performance[J].Fuel,2016,164:347-351.doi:10.1016/j.fuel.2015.09.089
[2]YUE B,LI Q,YE J,et al.Hydrogen Production Using Zinc-doped Carbon Nitride Catalyst Irradiated with Visible Light[J].Sci Tech Adv Mater,2011,12(3):1-7.doi:10.1088/1468-6996/12/3/034401
[3]AN X,WANG W,WANG J,et al.The Synergetic Effects of Ti3C2 Mxene and Pt as Co-catalysts for Highly Efficient Photocatalytic Hydrogen Evolution over g-C3N4[J].Phys Chem Chem Phys,2018,20(16):11405-11411.doi:10.1039/c8cp01123k
[4]LI G,LIAN Z,WANG W,et al.Nanotube-confinement Induced Size-controllable g-C3N4 Quantum Dots Modified Single-crystalline TiO2 Nanotube Arrays for Stable Synergetic Photoelectrocatalysis[J].Nano Energy,2016,19:446-454.doi:10.1016/j.nanoen.2015.10.011
[5]LIU L,ZHANG G,WU Y,et al.Organic Semiconductor g-C3N4 Modified TiO2nanotube Arrays for Enhanced Photoelectrochemical Performance in Wastewater Treatment[J].Energy Technology,2015,3(9):982-988.doi:10.1002/ente.201500114
[6]ZHOU D,CHEN Z,YANG Q,et al.In-situ Construction of All-solid-state Z-scheme G-C3N4/TiO2 Nanotube Arrays Photocatalyst with Enhanced Visible-light-induced Properties[J].Sol Energy Mater Sol Cells,2016,157:399-405.doi:10.1016/j.solmat.2016.07.007
[7]LIU R,BIE Y,QIAO Y,et al.Design of g-C3N4/TiO2 Nanotubes Heterojunction for Enhanced Organic Pollutants Degradation in Waste Water[J].Mater Lett,2019,251:126-130.doi:10.1016/j.matlet.2019.05.065
[8]LIU C,WANG F,ZHANG J,et al.Efficient Photoelectrochemical Water Splitting by g-C3N4/TiO2 Nanotube Array Heterostructures[J].Nanomicro Lett,2018,10(2):245-257.doi:10.1007/s40820-018-0192-6
[9]ADDAMO M D,AUGUGLIARO V,di PAOLA A,et al.Preparation and Photoactivity of Nanostructured TiO2 Particles Obtained by Hydrolysis of TiCl4[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,265(1/2/3):23-31.doi:10.1016/j.colsurfa.2004.11.048
[10]MIN Z,WANG X,LI Y,et al.A Highly Efficient Visible-light-responding Cu2O-TiO2/g-C3N4 Photocatalyst for Instantaneous Discolorations of Organic Dyes[J].Mater Lett,2017,193:18-21.doi:10.1016/j.matlet.2017.01.083
[11]GUO Y,XIAO L,ZHANG M,et al.An Oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 Heterostructure for Enhanced Visible Light Photocatalytic Performance[J].Applied Surface Science,2018,440:432-439.doi:10.1016/j.apsusc.2018.01.144
[12]ZHOU X,LI X,WANG X,et al.Three Dimensional Hierarchical Heterostructures of g-C3N4 Nanosheets/TiO2 Nanofibers:Controllable Growth via Gas-solid Reaction and Enhanced Photocatalytic Activity Under Visible Light[J].J Hazard Mater,2018,344:113-122.doi:10.1016/j.jhazmat.2017.10.006
[13]LI J,ZHANG M,LI Q.Enhanced Visible Light Activity on Direct Contact Z-scheme g-C3N4-TiO2 Photocatalyst[J].Applied Surface Science,2017,391:184-193.doi:10.1016/j.apsusc.2016.06.145
[14]BASHIR H,YI X,YUAN J,et al.Highly Ordered TiO2 Nanotube Arrays Embedded with g-C3N4 Nanorods for Enhanced Photocatalytic Activity[J].Journal of Photochemistry and Photobiology A:Chemistry,2019,382:1-9.doi:10.1016/j.jphotochem.2019.111930
[15]WANG C,HU L,CHAI B,et al.Enhanced Photocatalytic Activity of Electrospun Nanofibrous TiO2/g-C3N4 Heterojunction Photocatalyst Under Simulated Solar Light[J].Applied Surface Science,2018,430:243-252.doi:10.1016/j.apsusc.2017.08.036
[16]MA L,WANG G,JIANG C,et al.Synthesis of Core-shell TiO2@g-C3N4 Hollow Microspheres for Efficient Photocatalytic Degradation of Rhodamine B Under Visible Light[J].Applied Surface Science,2018,430:263-272.doi:10.1016/j.apsusc.2017.07.282
[17]JO W-K,NATARAJAN T S.Influence of TiO2 Morphology on the Photocatalytic Efficiency of Direct Z-scheme g-C3N4/TiO2 Photocatalysts for Isoniazid Degradation[J].Chemical Engineering Journal,2015,281:549-565.doi:10.1016/j.cej.2015.06.120
[18]WANG X,YANG W,LI F,et al.In Situ Microwave-assisted Synthesis of Porous N-TiO2/g-C3N4 Heterojunctions with Enhanced Visible-light Photocatalytic Properties[J].Ind Eng Chem Res,2013,52(48):17140-17150.doi:10.1021/ie402820v
[19]LI G,NIE X,CHEN J,et al.Enhanced Visible-light-driven Photocatalytic Inactivation of Escherichia Coli Using g-C3N4/TiO2 Hybrid Photocatalyst Synthesized Using A Hydrothermal-calcination Approach[J].Water Res,2015,86:17-24.doi:10.1016/j.watres.2015.05.053
[20]KONG L,ZHANG X,WANG C,et al.Ti3+ Defect Mediated g-C3N4/TiO2 Z-scheme System for Enhanced Photocatalytic Redox Performance[J].Applied Surface Science,2018,448:288-296.doi:10.1016/j.apsusc.2018.04.011
[21]QI K,CHENG B,YU J.A Review on TiO2-based Z-scheme Photocatalysts[J].Chin J Catal,2017,38(12):1936-1955.doi:10.1016/S1872-2067(17)62962-0
[22]KANDI D,MARTHA S.Cds QDs-decorated Selfdopedg-Bi2MoO6:Asustainable and Versatile Photocatalyst Toward Photoreductionof Cr (Ⅵ) and Degradation of Phenol[J].ACS Omega,2017(2):9040-9056.doi:10.1021/acsomega.7b01250
[23]LI J,YIN Y,LIU E,et al.In Situ Growing Bi2MoO6 on g-C3N4nanosheets with Enhanced Photocatalytic Hydrogen Evolution and Disinfection of Bacteriaunder Visible Light Irradiation[J].J Hazard Mater,2017,321:183-191.doi:10.1016/j.jhazmat.2016.09.008
[24]SINGH S,PARVEEN N,GUPTA H.Adsorptive Decontamination of Rhodamine-B from Water Using Banana Peel Powder:A Biosorbent[J].Environmental Technology&Innovation,2018,12:189-195.doi:10.1016/j.eti.2018.09.001
[25]SUN Y,JIN D,SUN Y,et al.G-C3N4/Ti3C2Tx(Mxenes) Composite with Oxidized Surface Groups for Efficient Photocatalytic Hydrogen Evolution[J].J Mater Chem A,2018,6(19):9124-9131.doi:10.1039/c8ta02706d
[26]HAO R,WANG G,JIANG C,et al.In Situ Hydrothermal Synthesis of g-C3N4/TiO2 Heterojunction Photocatalysts with High Specific Surface Area for Rhodamine B Degradation[J].Applied Surface Science,2017,411:400-410.doi:10.1016/j.apsusc.2017.03.197
[27]MENG A,ZHANG L,CHENG B,et al.Dual Cocatalysts in TiO2 Photocatalysis[J].Adv Mater,2019,31(30):1-31.doi:10.1002/adma.201807660
[28]ZHOU X,WANG L,SONG Y Y,et al.Pt-Decorated g-C3N4/TiO2 Nanotube Arrays with Enhanced Visible-light Photocatalytic Activity for H2 Evolution[J].Chemistryopen,2016,5(3):197-200.doi:10.1002/open.201500219
[29]ZHANG W,LIU Y,LI W,et al.Au Nanocrystals Decorated TiO2 Nanotube Arrays as Anode Material for Lithium Ion Batteries[J].Applied Surface Science,2019,476:948-958.doi:10.1016/j.apsusc.2019.01.159
[30]WATSON T,HOLLIMAN P,WORSLE D.Continuous in Situ Monitoring of Dye Sensitisation in Dye-sensitized Solar Cells[J].J Mater Chem,2011,21(12):4321-4325.doi:10.1039/c0jm03607b