在线阅读 --自然科学版 2020年1期《次分数随机利率模型下欧式期权定价的Mellin变换法》
次分数随机利率模型下欧式期权定价的Mellin变换法--[在线阅读]
孙娇娇
淮北师范大学 数学科学学院, 安徽 淮北 235000
起止页码: 18--24页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.01.003
摘要
给出了金融市场的即期利率由次分数Vasicek随机利率模型驱动时的欧式看涨期权定价公式.利用Mellin变换方法求解该模型下欧式期权价值满足的Black-Scholes偏微分方程,得到了欧式看涨期权简单积分形式的定价公式,并通过Mellin变换的卷积公式得到了欧式看涨期权的解析解.数值算例验证了Mellin变换法的收敛性,并分析了各种参数对欧式看涨期权价值的影响,从而推广了期权定价的方法.

Mellin Transform Method for European Option Pricing Under Sub-fractional Stochastic Interest Rate Model
SUN Jiaojiao
School of Mathematical Science, Huaibei Normal University, Anhui Huaibei 235000, China
Abstract:
The pricing formula of European call option in financial market is given when the spot interest rate is driven by sub-fractional Vasicek stochastic interest rate model.The Mellin transform method is used to solve the Black-Scholes partial differential equation satisfied by European option value,and get the pricing formula in simple integral form of European call option.The analytical solution of European call option is obtained through the convolution formula of Mellin transform.A numerical example verifies the convergence of Mellin transform technology,and analyzes the influence of various parameters on the value of European call options, thus promoting the option pricing method.

收稿日期: 2019-06-07
基金项目: 安徽省自然科学基金(1408085MA14);安徽省高等学校自然科学研究重点项目(KJ2017A379);安徽省高等学校自然科学研究一般项目(KJ2018B01)

参考文献:
[1]高新羽,刘丽霞.分数布朗运动下具有不确定执行价格的领子期权定价[J].河北师范大学学报(自然科学版),2018,42(1):7-14.doi:10.13763/j.cnki.jhebnu.nse.2018.01.002 GAO Xinyu,LIU Lixia.Pricing of Collar Option with Ucertain Strike Price Basod on Fractional Brownian Motion[J].Journal of Hebei Normal University (Natural Science),2018,42(1):7-14.
[2]张艳,周圣武,韩苗.随机利率Vasicek模型下的欧式缺口期权的定价研究[J].大学数学,2012,28(4):98-101.doi:10.3969/j.issn.1672-1454.2012.04.02ZHANG Yan,ZHOU Shengwu,HAN Miao.Study on European Gap Option Pricng Under Vasicek Interest Rate Mode[J].College Mathematics,2012,28(4):98-101.
[3]白婷,李翠香.随机利率分数布朗运动模型下的欧式双向期权定价[J].河北师范大学学报(自然科学版),2015,39(3):190-196.doi:10.13763/j.cnki.jhebnu.nse.2015.03.002 BAI Ting,LI Cuixiang.Pricing of Bi-direction European Option Under Fractional Brownian Motion with Stochastic Interest Rates[J].Journal of Hebei Normal University (Natural Science),2015,39(3):190-196.
[4]李志广,康淑瑰.混合分数布朗运动环境下短期利率服从Vasicek模型的欧式期权定价[J].数学杂志,2016,36(3):641-648.doi:10.13548/j.sxzz.20130311004 LI Zhiguang,KANG Shugui.European Option Pricing Under the Vasicek Model of the Short Rate in Mixed Fractional Browonian Motion Environmen[J].J of Math (PRC),2016,36(3):641-648.
[5]TUDOR C.Some Properties of the Sub-fractional Brownian Motion[J].Stochastics:An International Journal of Probability and Stochastic Processes,2007,79(5):431-448.doi:10.1080/17442500601100331
[6]YAN L,SHEN G,HE K.Ito's Formula for a Sub-fractional Brownian Motion[J].Commun Stoch Anal,2011,5(1):135-159.doi:10.31390/cpsa.5.1.09
[7]郭精军,张亚芳.次分数Vasicek随机利率模型下的欧式期权定价[J].应用数学,2017,30(3):503-511.doi:10.13642/j.cnki.42-1184/01.2017.03.027 GUO Jingjun,ZHANG Yafang.Europenn Option Pricing Under Subfractional Nasicek Stochastic Interest Tate Mode[J].Mathemtica Applicata,2017,30(3):503-511.
[8]ELSHEGMANI Z A,AHMED R R.Analytical Solution for an Arithmetic Asian Option Using Mellin Transforms[J].International Journal of Mathematical Analysis,2011,5(25):1259-1265.
[9]CHANDRA S R,MUKHERJEE D.Barrier Option Under Lévy Model:A PIDE and Mellin Transform Approach[J].Social Science Electronic Publishing,2016,4(2):1-18.doi:10.3390/Math4010002
[10]JEON J,YOON J H,KANG M.Pricing Vulnerable Path-dependent Options Using Integral Transforms[J].Journal of Computational&Applied Mathematics,2017,313:259-272.doi:10.1016/j.cam.2016.09.024
[11]RAY T L I,RODRIGO M R.Alternative Results for Option Pricing and Implied Volatility in Jump-diffusion ModelsUsing Mellin Transforms[J].European Journal of Applied Mathematics,2017,28(5):1-38.doi:10.1017/s0956792516000516