在线阅读 --自然科学版 2020年1期《有限仿射辛空间的Erdös-Ko-Rado定理》
有限仿射辛空间的Erdös-Ko-Rado定理--[在线阅读]
郝珊珊1, 蔡炳苓1, 康娜2
1. 河北师范大学 数学科学学院, 河北 石家庄 050024;
2. 河北地质大学 数理学院, 河北 石家庄 050031
起止页码: 1--5页
DOI: 10.13763/j.cnki.jhebnu.nse.2020.01.001
摘要
给出了有限仿射辛空间中0-相交族基数及1-相交族基数的上界以及达到上界时该相交族的结构,得到了有限仿射辛空间中0-相交族及1-相交族的Erdös-Ko-Rado定理.

The Erdös-Ko-Rado Theorem for Finite Affine Symplectic Space
HAO Shanshan1, CAI Bingling1, KANG Na2
1. School of Mathematical Sciences, Hebei Normal University, Hebei Shijiazhuang 050024, China;
2. School of Mathematics and Physics, Hebei GEO University, Hebei Shijiazhuang 050031, China
Abstract:
In this paper,we determine the maximum size of 0-intersecting family and 1-intersecting family in finite affine-symplectic space and describe the structures of these intersechiy families which reach these upper bounds,which is called the Erdös-Ko-Rado theorem of affine finite symplectic space.

收稿日期: 2019-09-05
基金项目: 国家自然科学基金(11971146);河北省自然科学基金(A2017403010);石家庄经济学院博士科研启动基金(BQ201517)

参考文献:
[1]ERDÖS P,KO C,RADO R.Intersection Theorems for Systems of Finite Sets[J].Quart J Math Oxford,1961(2):313-318.
[2]FRANKL P,WILSON R M.The Erd s-Ko-Rado Theorem for Vector Spaces[J].J Combin Theory Ser A,1986,43:228-236.
[3]GUO J,XU Q L.The Erd s-Ko-Rado Theorem for Finite Affine Spaces[J].Linear Multilinear A,2017,65(3):593-599.
[4]ZHU X L.Affine-symplectic Space and Its Appcations[J].J of Math,1998,18:433-438.doi:10.13548/j.sxzz.1998.04.015
[5]GAO S G,LI Z T,DU H J,et al.Approaching Pooling Design with Smaller Efficient Ratio[J].J Optim,2011,49(1):125-135.