在线阅读 --自然科学版 2019年6期《一类带扰动的二阶Hamilton系统周期解的存在性》
一类带扰动的二阶Hamilton系统周期解的存在性--[在线阅读]
郑玲玲1, 陈行凡2
1. 天津大学 数学学院, 天津 300354;
2. 天津市第一中学 滨海学校, 天津 300450
起止页码: 468--472页
DOI: 10.13763/j.cnki.jhebnu.nse.2019.06.003
摘要
利用鞍点定理得到了一类带扰动的二阶Hamilton系统周期解的存在性,推广了先前文献的结果,并给出了例子.

Existence of Periodic Solutions for a Class of Second Order Hamiltonian Systems with Perturbation
ZHENG Lingling1, CHEN Xingfan2
1. School of Mathematics, Tianjin University, Tianjin 300354, China;
2. Tianjin No. 1 High School of Binhai, Tianjin 300450, China
Abstract:
The existence result of periodic solution for a class of second order Hamiltonian systems with perturbation is obtained by the saddle point theorem, previous research results are improved and an example is given.

收稿日期: 2019-03-15
基金项目:

参考文献:
[1]JIANG Q,TANG C L.Periodic and Subharmonic Solutions of a Class Subquadratic Second-order Hamiltonian Systems[J].J Math Anal Appl,2007,328(1):380-389.doi:10.1016/j.jmaa.2006.05.064
[2]LONG Y M.Nonlinear Oscillations for Classical Hamiltonian Systems with Bi-even Subquadratic Potentials[J].Nonlinear Anal,1995,24(2):1665-1671.doi:10.1016/0362-546x(94)00227-9
[3]MAWHIN J,WILLEM M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-verlag,1989:9-15.doi:10.1007/978-1-4757-2061-7
[4]RABINOWITZ P.Minimax Methods in Critical Point Theory with Applications to Differential Equations[M].Rhode Island:AMS,1986:7-24.
[5]ZHAO F K,CHEN J,YANG M B.A Periodic Solution for a Second Order Asymptotically Linear Hamiltonian Systems[J].Nonlinear Anal,2009,70(11):4021-4026.doi:10.1016/j.na.2008.08.009
[6]TANG C L,WU X P.Periodic Solutions for a Class of New Superquadratic Second Order Hamiltonian Systems[J].Appl Math Lett,2014,34(8):65-71.doi:10.1016/j.aml.2014.04.001
[7]WANG Z Y,XIAO J Z.On Periodic Solutions of Subquadratic Second Order Non-autonomous Hamiltonian Systems[J].Appl Math Lett,2015,40(1):72-77.doi:10.1016/j.aml.2014.09.014
[8]TANG X H,JIANG J C.Existence and Multiplicity of Periodic Solutions for a Class of Second-order Hamiltonian Systems[J].Comput Math Appl,2010,59(2):3646-3655.doi:10.1016/j.camwa.2010.03.039
[9]CHEN X F,GUO F,LIU P.Existence of Periodic Solutions for Second-order Hamiltonian Systems with Asymptotically Linear Conditions[J].Front Math China,2018,13(6):1313-1323.doi:10.1007/s11464-018-0736-6
[10]DENG C H,WU D L.Multiple Homoclinic Solutions for a Class of Nonhomogeneous Hamiltonian Systems[J].Bound Value Probl,2018,56(1):1-10.doi:10.1186/s13661-018-0977-z
[11]ZHANG Z H,YUAN R.Two Almost Homoclinic Solutions for a Class of Perturbed Hamiltonian Systems Without Coercive Conditions[J].Math Model Anal,2015,20(1):112-123.doi:10.3846/13926292.2015.1003619
[12]BARTOLO P,BENCI V,FORTUNATO D.Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong" Resonance at Infinity[J].Nonlinear Analtheor,1983,7(9):981-1012.doi:10.1016/0362-546X(83)90115-3