在线阅读 --自然科学版 2019年4期《人工核酸酶介导的基因靶向修饰技术》
人工核酸酶介导的基因靶向修饰技术--[在线阅读]
范双莉
济源职业技术学院 医学护理系, 河南 济源 459000
起止页码: 345--349页
DOI: 10.13763/j.cnki.jhebnu.nse.2019.04.011
摘要
基因组靶向修饰技术是基因组改造和基因研究的重要手段,而人工核酸酶介导的基因修饰技术很大程度上提高了基因组靶向修饰的有效性、高效性和特异性,其主要工作原理是造成特异性的DNA双链断裂(DSB)诱导细胞内DNA修复,从而造成自发突变或引入人为变化,完成基因的敲入或者敲除.人工核酸酶基因修饰技术,包括了锌指核酸酶(ZFN)技术、类转录激活因子效应物核酸酶(TALEN)技术以及CRISPR-Cas系统,它们的分子作用机制、系统构建以及效用有一定的不同.对3种基因修饰技术的原理、研究进展和应用进行系统的阐述.通过利用人工基因修饰技术,能够精确、高效地对特定的基因实现编辑和修饰,以期在基因工程领域得到广泛的应用.

Targeted Gene Modification Technology Using Artificial Nucleases
FAN Shuangli
Department of Medical Nursing, Jiyuan Vocational and Technical College, Henan Jiyuan 459000, China
Abstract:
Targeted genomic modification technology is an important tool of genome engineering and genetic research.Artificial nuclease-mediated genetic modification technology greatly improves the effectiveness,efficiency and specificity of targeted genomic modification.Its main principle is to cause specific DNA double-strand break (DSB) to induce intracellular DNA repair,and spontaneous mutation or artificial changes are then introduced to accomplish gene knock-in or knock-out.Artificial nuclease-mediated genetic modification techniques,including zinc finger nuclease (ZFN) technology,transcription activator-like effector nuclease (TALEN) technology and CRISPR-Cas system,have different molecular mechanisms,system constructions and efficacies.In this paper,the principle,research progress and application of the above three genetic modification technologies are systematically reviewed.By using artificial genetic modification technology,we can edit and modify specific genes accurately and efficiently,and it will gain wider and wider application in the field of genetic engineering.

收稿日期: 2018-12-12
基金项目: 河南省高等学校重点科研项目(17A210036)

参考文献:
[1]肖安,胡莹莹,王唯晔,等.人工锌指核酸酶介导的基因组定点修饰技术[J].遗传,2011,33(7):665-683.doi:10.3724/sp.j.1005.2001.00665 XIAO An,HU Yingying,WANG Weiye,et al.Artificial Zinc Finger Nuclease Mediated Genomic Localization Modification[J].Genetics,2011,33(7):665-683.
[2]张白雪,孙其信,李海峰.基因修饰技术研究进展[J].生物工程学报,2015,31(8):1162-1174.doi:10.13345/j.cjb.140479 ZHANG Baixue,SUN Qixin,LI Haifeng.Advances in Gene Modification Technology[J].Journal of Biological Engineering,2015,31(8):1162-1174.
[3]PALPANT N J,DUDZINSKI D.Zinc Finger Nucleases:Looking Toward Translation[J].Gene Ther,2013,20(2):121-127.doi:10.1038/gt.2012.2
[4]杨翌.应用类转录激活因子效应物核酸酶(TALEN)定点修饰猪基因组[D].长春:吉林大学,2014. YANG Yi.Site-directed Modification of Pig Genome with Transcription Activator-like Effector Nuclease (TALEN)[D].Changchun:Jilin University,2014.
[5]王令.锌指核酸酶的构建及其在动物基因组编辑中的应用[D].咸阳:西北农林科技大学,2013. WANG Ling.Construction of Zinc Finger Nuclease and Its Application in Animal Genome Editing[D].Xianyang:Northwest Agriculture and Forestry University,2013.
[6]ZU Y,TONG X,WANG Z,et al.TALEN-mediated Precise Genome Modification by Homologous Recombination in Zebrafish[J].Nature Methods,2013,10(4):329-331.doi:10.1038/nmeth.2374
[7]支大龙,牛昱宇,季维智.人工核酸酶介导的基因组编辑技术[J].中国生物化学与分子生物学报,2015,31(11):1132-1137.doi:10.13865/j.cnki.cjbmb.2015.11.02 ZHI Dalong,NIU Yuyu,JI Weizhi.Artificial Nuclease Mediated Genome Editing Technology[J].Chinese Journal of Biochemistry and Molecular Biology,2015,31(11):1132-1137.
[8]李浩,邱少富,宋宏彬.成簇的规律间隔的短回文重复序列(CRISPR)基因组编辑技术研究进展[J].微生物学报,2013,53(10):1025-1030.doi:10.13343/j.cnki.wsxb.2013.10.002 LI Hao,QIU Shaofu,SONG Hongbin.Research Progress of Clustered Regular Interval Short Palindrome Repeat Sequence (CRISPR) Genome Editing Technology[J].Journal of Microbiology,2013,53(10):1025-1030.
[9]VILLION M,MOINEAU S.The Double-edged Sword of CRISPR-Cas Systems[J].Cell Res,2013,23(1):15-17.doi:10.1038/cr.2012.124
[10]卫兴浩.利用灵长类动物模型探究帕金森病早期的发病特点和机制[D].昆明:昆明理工大学,2017. WEI Xinghao.Exploring the Characteristics and Mechanism of Parkinson's Disease in Early Stage Using Primate Models[D].Kunming:Kunming University of Technology,2017.
[11]WIEDENHEFT B,STERNBERG S H,DOUDNA J A.RNA-guided Genetic Silencing Systems in Bacteria and Archaea[J].Nature,2012,482(7385):331-338.doi:10.1038/nature10886
[12]DICARLO J E,NORVILLE J E,MALI P,et al.Genome Engineering in Saccharomyces Cerevisiae Using CRISPR-Cas Systems[J].Nucleic Acids Research,2013,41(7):4336-4343.doi:10.1093/nar/gkt135
[13]FRIEDLAND A E,TZUR Y B,ESVELT K M,et al.Heritable Genome Editing in C elegans via a CRISPR-Cas9 System[J].Nat Methods,2013,10(8):741-743.doi:10.1038/nmeth.2532
[14]CONG L,RAN F A,COX D,et al.Multiplex Genome Engineering UsingcrispR/cas Systems[J].Science,2013,339(6121):819-823.doi:10.1126/science.1231143
[15]CHO S W,KIM S,KIM J M,et al.Targeted Genome Engineering in Human Cells with the Cas9 RNA-guided Endonuclease[J].Nat Biotech,2013,31(3):230-232.doi:10.1038/nbt.2507