在线阅读 --自然科学版 2019年4期《电磁辐射下HR神经元模型的分岔分析》
电磁辐射下HR神经元模型的分岔分析--[在线阅读]
乔帅1, 张莉2, 安新磊1, 王红梅1, 张薇1
1. 兰州交通大学 数理学院, 甘肃 兰州 730070;
2. 兰州工业学院 基础学科部, 甘肃 兰州 730050
起止页码: 306--312页
DOI: 10.13763/j.cnki.jhebnu.nse.2019.04.005
摘要
运用理论与仿真相结合的方法,分析了电磁感应下改进的HR神经元模型的动力学特征.由于系统的关键参数与外刺激电流的变化对系统动力学行为有重要的影响,因此分析了外界刺激电流对系统平衡点分布的影响,发现了多值平衡点区域.在此基础上,对系统进行鞍结分岔分析,探讨了关键参数对系统临界鞍结点分布的影响,同时分析了系统Hopf分岔及其分岔类型与分岔出的周期解的稳定性,并与数值模拟相结合验证了上述的理论分析,从而揭示了系统所具备的复杂的放电特征.

Bifurcation Analysis on HR Neuron Models Under Electromagnetic Radiation
QIAO Shuai1, ZHANG Li2, AN Xinlei1, WANG Hongmei1, ZHANG Wei1
1. School of Mathematics and Physic, Lanzhou Jiaotong University, Gansu Lanzhou 730070, China;
2. Department of the Basic Courses, Lanzhou Insitute of Technology, Gansu Lanzhou 730050, China
Abstract:
The dynamics of the improved HR neuron model under electromagnetic induction is analyzed by combining theory with simulation.Considering the key parameters of the system and the change of external stimulation current have an important influence on the dynamic behavior of the system,the influence of external stimulus current on the equilibrium point distribution of the system was analyzed and finds the multi-value equilibrium point region was found in this paper.On this basis,the saddle-node bifurcation analysis of the system is carried out,and the influence of key parameters on the critical saddle node distribution of the system is discussed.At the same time,the stability of the system Hopf bifurcation and its bifurcation type and the bifurcation periodic solution are analyzed.Combined with numerical simulation,the above theoretical analysis is verified,which reveals the complex discharge characteristics of the system.

收稿日期: 2019-04-02
基金项目: 甘肃省自然科学基金(17JR5RA096);兰州工业学院青年科技创新项目(17K-016)

参考文献:
[1]商梦媛,李群宏.一类耦合神经元模型的分岔分析[D].南宁:广西大学,2018. SHANG Mengyuan,LI Qunhong.Bifurcation Analysis of a Class of Coupled Neuron Models[D].Nanning:Guangxi University,2018.
[2]吕密.电磁辐射下的神经元的建模及其动力学分析[D].兰州:兰州理工大学,2017. LYU Mi.Modeling and Dynamic Analysis of Neurons Under Electromagnetic Radiation[D].Lanzhou:Lanzhou University of Technology,2017.
[3]于欢欢,张莉.磁通神经元模型的放电行为的分析[J].河北师范大学学报(自然科学版),2019,43(1):37-44.doi:10.13763/j.cnki.jhebnu.nse.2019.01.006 YU Huanhuan,ZHANG Li.Analysis of Discharge Behavior of Flux Neuron Model[J].Journal of Hebei Normal University(Natural Science Edition),2019,43(1):37-44.
[4]袁春华.神经元动力学分析与放电特性的研究[D].天津:天津大学,2017.YUAN Chunhua.Study on Neuronal Dynamics Analysis and Discharge Characteristics[D].Tianjin:Tianjin University,2017.
[5]张家忠.非线性动力系统的运动稳定性、分岔理论及其应用[M].西安:西安交通大学出版社,2010. ZHANG Jiazhong.Motion Stability,Bifurcation Theory and Its Application of Nonlinear Dynamic Systems[M]. Xi'an:Xi'an Jiaotong University Press,2010.
[6]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2016. LIU Bingzheng,PENG Jianhua.Nonlinear Dynamics[M].Beijing:Higher Education Press,2016.
[7]王天,高晓伟,王世俊.Sherman神经元系统时滞放电模式的分岔分析[J].咸阳师范学院学报,2016,31(6):50-53.doi:10.3969/j.issn.1672-2914.2016.06.011 WANG Tian,GAO Xiaowei,WANG Shijun.Bifurcation Analysis of Delay Discharge Mode in Sherman Neuron System[J].Journal of Xianyang Normal University,2016,31(6):50-53.
[8]GUO S,TANG J,MA J,et al.Autaptic Modulation of Electrical Activity in a Network of Neuron-coupled Astrocyte[J].Complexity,2017(20):1-13.doi:10.1155/2017/4631602
[9]MA Jun.A Review for Dynamics of Collective Behaviors of Network of Neurons[D].Lanzhou:Lanzhou University of Technology,2015.
[10]ZHUANG Kejun.Hopf Bifurcation Analysis for a Novel Hyperchaotic System[D].Bengbu:Anhui University of Finance and Economic,2013.
[11]WANG Zhen.Bifurcation Analysis and Feedback Control of a 3D Chaotic System[D].Shanxi:Shanxi Uinversity of Science and Technology,2007.
[12]WEI Zhouchao,ZHANG Wei.Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System[D].Beijing:Beiing Univeisity of Technoloy,2015.