在线阅读 --自然科学版 2019年4期《一类多项分数阶微分方程解的全局吸引性》
一类多项分数阶微分方程解的全局吸引性--[在线阅读]
李艳峰, 郝燕朋, 王二静, 李巧銮
河北师范大学 数学与信息科学学院, 河北 石家庄 050024
起止页码: 282--287页
DOI: 10.13763/j.cnki.jhebnu.nse.2019.04.002
摘要
讨论了含有Caputo-Katugampola分数阶导数的分数阶微分方程解的全局吸引性.首先将微分方程转化为积分方程,再利用Schauder不动点定理得到解的存在性,最后利用所构造集合的性质得到相关结论.

Global Attractivity of Solutions for a Class of Multi-term Fractional Differential Equations
LI Yanfeng, HAO Yanpeng, WANG Erjing, LI Qiaoluan
College of Mathematics and Information Sciences, Hebei Normal University, Hebei Shijiazhuang 050024, China
Abstract:
In this paper,we present results for the global attractivity of solutions of fractional differential equations involving Caputo-Katugampola fractional calculus.By transforming the differential equations into an integral equations,the existence of the solutions is obtained by using the Schauder's fixed point theorem,and some related conclusions are obtained by using the properties of the constructional set of the solutions.

收稿日期: 2018-10-25
基金项目: 国家自然科学基金(11571090);河北师范大学创新资助项目(CXZZSS2018061)

参考文献:
[1]CHEN Fulai,ZHOU Yong.Attractivity of Fractional Functional Differential Equations[J].Comput Math Appl,2011,62:1359-1369.doi:10.1016/j.camwa.2011.03.062
[2]LOSADA J,NIETO J J,POURHADI E.On the Attractivity of Solutions for a Class of Multi-term Fractional Functional Differential Equations[J].Comput Appl Math,2017,312:2-12.doi:10.1016/j.cam.2015.07.014
[3]ZHOU Yong.Attractivity for Fractional Differential Equations in Banach Space[J].Appl Math Lett,2018,75:1-6.doi:10.1016/j.aml.2017.06.008
[4]CHEN Fulai,NIETI J J,ZHOU Yong.Global Attractivity for Nonlinear Fractional Differential Equations[J].Nonlinear Anal-real,2012,13:287-298.doi:10.1016/j.nonrwa.2011.07.034
[5]GAMBO Y Y,AMEEN R,JARAD F,et al.Existence and Uniqueness of Solutions to Fractional Differential Equations in the Frame of Generalized Caputo Fractional Derivatives[J].Adv Differ Equ,2018,134:1-13.doi:10.1186/s13662-018-1594-y
[6]KATUGAMPOLA U N.New Approach to Generalized Fractional Integral[J].Appl Math Comput,2011,218:860-865.doi:10.1016/j.amc.2011.03.062
[7]KATUGAMPOLA U N.A New Approach to Generalized Fractional Derivatives[J].Bull Math Anal Appl,2014,6(4):1-15.
[8]ALMEIDA R,MALINOWSKA A B,ODZIJEWICZ T.Fractional Differential Equations with Dependence on the Caputo-katugampola Derivative[J].Comput Nonlin Dyn,2016,11:1-11.doi:10.1115/1.4034432.
[9]JARAD F,ABDELJAWAD T,BALEANU D.On the Generalized Fractional Derivatives and Their Caputo Modification[J].Nonlinear Sci Appl,2017,10:2607-2619.doi:10.22436/jnsa.010.05.27
[10]张恭庆,林源渠.泛函分析讲义[M].北京:北京大学出版社,2015. ZHANG Gongqing,LIN Yuanqu.Lecture Notes on Functional Analysis[M].Beijng:Peking University Press,2015.