在线阅读 --自然科学版 2019年2期《基于相位编码的诱骗态量子密钥分发系统的优化》
基于相位编码的诱骗态量子密钥分发系统的优化--[在线阅读]
于波, 张青梅, 丁伟杰, 菅在河, 张清
忻州师范学院 物理系, 山西 忻州 034000
起止页码: 112--115页
DOI: 10.13763/j.cnki.jhebnu.nse.2019.02.004
摘要
基于相位编码的边带干涉量子密钥分发系统具有稳定性高、多通道复用传输等优点,适用于量子通信网络;但是在边带干涉量子密钥分发中直接应用诱骗态协议时会带来安全漏洞.通过优化载波比(1.06)克服了安全漏洞,在25km光纤中实现了稳定的诱骗态量子密钥分发,通过优化实验参数系统每脉冲成码率最大为1.28×10-4bit.

Optimizing of Decoy State Quantum Key Distribution System Based on Phase Coding
YU Bo, ZHANG Qingmei, DING Weijie, JIAN Zaihe, ZHANG Qing
Department of Physics, Xinzhou Teachers University, Shanxi Xinzhou 034000, China
Abstract:
Sidebands interference quantum key distribution system based on phase coding has the advantages of high stability,multichannel multiplexing transmission and so on,thus it is suitable for quantum communication network.But direct application of the decoy state protocol to sidebands interference quantum key distribution leads to the security loophole.After optimizing the carrier ratio to 1.06,the security loophole is overcome.The stable decoy state quantum key distribution is realized over 25km fiber.After optimizing the experimental parameters,the system key generation rate per pulse is maximized to 1.28×10-4 bit.

收稿日期: 2018-10-20
基金项目: 忻州师范学院科研基金(201715)

参考文献:
[1]MORA J,RUIZ-ALBA A,AMAYA W,et al.Experimental Demonstration of Subcarrier Multiplexed Quantum Key Distribution System[J].Opt Express,2012,37(11):2031-2033.doi:10.1364/Oe.37.002031
[2]MORA J,AMAYA W,RUIZ-ALBA A,et al.Simultaneous Transmission of 20×2 WDM/SCM QKD and 4 Bidirectional Classical Channels over a Pon[J].Opt Express,2012,20(15):16358-16365.doi:10.1364/Oe.20.016358
[3]BHATTACHARYA S,KRISHNAMURTHY P.Decoy-state Method for Subcarrier-multiplexed Frequency Coded Quantum Key Distribution[J].J Opt Soc Am B,2013,30(4):782-787.doi:10.1364/Josab.30.000782
[4]KORZH B,LIM C C W,HOULMANN R,et al.Provably Secure and Practical Quantum Key Distribution over 307 km of Optical Fibre[J].Nat Photon,2015,9:163-168.doi:10.1038/Nphoton.2014.327
[5]LO H K,CURTY M,TAMAKI K.Secure Quantum Key Distribution[J].Nat Photon,2014,8:595-604.doi:10.1038/Nphoton.2014.149
[6]BRASSARD G,LÜTKENHAUS N,MOR T,et al.Limitations on Practical Quantum Cryptography[J].Phys Rev Lett,2000,85(6):1330-1333.doi:10.1103/PhysRevLett.85.1330
[7]MA X,QI B,ZHAO Y,et al.Practical Decoy State for Quantum Key Distribution[J].Phys Rev A,2005,72(1):012326.doi:10.1103/PhysRevA.72.012326
[8]LIM C C W,CURTY M,WALENTA N,et al.Concise Security Bounds for Practical Decoy-state Quantum Key Distribution[J].Phys Rev A,2014,89(2):022307.doi:10.1103/PhysRevA.89.022307
[9]YUAN Z L,SHARPE A W,SHIELDS A J.Unconditionally Secure One-way Quantum Key Distribution Using Decoy Pulses[J].Appl Phys Lett,2007,90(1):011118.doi:10.1063/1.2430685
[10]MANDERBACH T S,WEIER H,FVRST M,et al.Experimental Demonstration of Free-space Decoy-state Quantum Key Distribution over 144 km[J].Phys Rev Lett,2007,98(1):010504.doi:10.1103/PhysRevLett.98.010504
[11]ROSENBERG D,PETERSON C G,HARRINGTON J W,et al.Practical Long-distance Quantum Key Distribution System Using Decoy Levels[J].New J Phys,2009,11:045009.doi:10.1088/1367-2630/11/4/045009
[12]SUN Q C,WANG W L,LIU Y,et al.Experimental Passive Decoy-state Quantum Key Distribution[J].Laser Phys Lett,2014,11(8):085202.doi:10.1088/1612-2011/11/8/085202
[13]GUERREAU O L,MEROLLA J M,SOUJAEFF A,et al.Long Distance Qkd Transmission Using Single-sideband Detection Scheme with Wdm Synchronization[J].IEEE J Sel Topics Quantum Electron,2003,9(6):1533-1540.doi:10.1109/Jstqe.2003.820929
[14]GLEIM A V,EGOROV V I,NAZAROV Y V,et al.Secure Polarization-independent Subcarrier Quantum Key Distribution in Optical Fiber Channel Using Bb84 Protocol with a Strong Reference[J].Opt Express,2016,24(3):2619-2633.doi:10.1364/Oe.24.002619
[15]CAPMANY J,ORTIGOSA-BLANCH A,MORA J,et al.Analysis of Subcarrier Multiplexed Quantum Key Distribution Systems:Signal,Intermodulation,and Quantum Bit Error Rate[J].IEEE J Sel Topics Quantum Electron,2009,15(6):1607-1621.doi:10.1109/Jstqe.2009.2031065