在线阅读 --自然科学版 2019年2期《KdV方程的非标准有限差分格式》
KdV方程的非标准有限差分格式--[在线阅读]
刘明鼎, 张艳敏
青岛理工大学 琴岛学院, 山东 青岛 266106
起止页码: 99--103页
DOI: 10.13763/j.cnki.jhebnu.nse.2019.02.002
摘要
给出了一类KdV方程的精确差分格式和非标准有限差分格式.先构造KdV方程的精确有限差分格式,并由此推导出一个非标准有限差分格式.在构造差分格式中,重点给出步长函数(分母函数)的具体形式,同时证明了该方法可以保持KdV方程解的正性和有界性.通过数值实验验证了非标准有限差分格式的可行性和有效性.

Nonstandard Finite Difference Schemes for a KdV Equation
LIU Mingding, ZHANG Yanmin
Qindao College, Qingdao Technological University, Shandong Qingdao 266106, China
Abstract:
In this paper,we give an accurate difference scheme and nonstandard finite difference scheme for a class of KdV equation.The exact finite difference scheme of the KdV equation is constructed and a nonstandard finite difference scheme is derived.In the construction of the difference scheme,the concrete form of the step function (denominator function) is given,and it is proved that thise method keeps the positivity and boundedness of the solution of the KdV equation.The feasibility and validity of the nonstandard finite difference scheme are verified by numerical experiments.

收稿日期: 2018-09-03
基金项目: 山东省高校科技计划(J17KB053)

参考文献:
[1]蒋朝龙,孙建强,何逊峰,等.KdV方程的高阶保能量算法[J].南京师范大学学报(自然科学版),2017,40(4):16-20.doi:10.3969/j.issn.1001-4616.2017.04.004 JIANG Chaolong,SUN Jianqiang,HE Xunfeng,et al.High Order Energy-preserving Method for the KdV Equation[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(4):16-20.
[2]赵红伟,胡兵,郑茂波.General Improved KdV方程的三层加权平均线性差分格式[J].四川大学学报(自然科学版),2017,54(1):12-18.doi:10.3969/j.issn.0490-6756.2017.01.003 ZHAO Hongwei,HU Bing,ZHENG Maobo.Three-level Average Linear Difference Scheme for the General Improved KdV Equation[J].Journal of Sichuan University(Natural Science Edition),2017,54(1):12-18.
[3]陈利娅,胡劲松.Rosenau-KdV方程的一个非线性守恒加权差分逼近[J].西北师范大学学报(自然科学版),2016,52(5):18-23.doi:10.16783/j.cnki.nwnuz.2016.05.005 CHEN Liya,HU Jinsong.A Weighted Nonlinear Conservative Difference Scheme for Rosenau-KdV Equation[J].Journal of Northwest Normal University(Natural Science Edition),2016,52(5):18-23.
[4]石方圆,李书存,奚茜.五阶KdV方程的高阶有限差分格式[J].河北师范大学学报(自然科学版),2017,41(2):104-110.doi:10.13763/j.cnki.jhebnu.nse.2017.02.003 SHI Fangyuan,LI Shucun,XI Xi.High-order Finite Difference Scheme for the Fifth-order KdV Equation[J].Journal of Hebei Normal University(Natural Science Edition),2017,41(2):104-110.
[5]于文莉,陈传军.KdV方程基于二次B样条的有限体积方法[J].烟台大学学报(自然科学与工程版),2016,29(3):157-162.doi:10.13951/j.cnki.37-1213/n.2016.03.001 YU Wenli,CHEN Chuanjun.A Quadratic B-spline Finite Volume Method for the KdV Equation[J].Journal of Yantai University(Natural Science and Engineering Edition),2016,29(3):157-162.
[6]杜晓霞.KdV方程的几类数值方法比较[D].湘潭:湘潭大学,2017.DU Xiaoxia.Comparison of Several Numerical Methods for the KdV Equation[D].Xiangtan:Xiangtan University,2017.
[7]ERDOGAN U,OZIS T.A Smart Nonstandard Finite Dierence Scheme for Second Ordernonlinear Boundary Value Problems[J].Journal of Computational Physics,2011,230(17):6464-6474.doi:10.1016/j.jcp.2011.04.003
[8]MICKENS R E,SMITH A.Finite-dierence Models of Ordinary Dierential Equations:Influence of Denominator Functions[J].Journal of the Franklin Institute,1990,327(1):143-149.doi:10.1016/0016-0032(90)90062-n
[9]MICKENS R E.Nonstandard Finite Dierence Models of Dierential Equations[M].Singapore:World Scientific,1994.
[10]MICKENS R E,JORDAN P.A Positivity-preserving Nonstandard Finite Dierencescheme for the Damped Wave Equation[J].Numerical Methods for Partial Dierential Equations,2004,20(5):639-649.doi:10.1002/num.20003
[11]MICKENS R E.Advances in the Applications of Nonstandard Finite Diference Schemes[M].Singapore:World Scientific,2005:526.
[12]廖翠萃.多辛变分积分子及非标准有限差分方法[D].哈尔滨:哈尔滨工业大学,2013. LIAO Cuicui.Multisy Mplectic Variational Integrators and Nonstand ard Finite Difference Methods[D].Harbin:Harbin Institute of Techology,2013.
[13]郭丽红.两类分数阶微分方程的行波解[D].长春:吉林大学,2017. GUO Lihong.The Traveling Ware Solutions for Two Classes of Fractional Differential Equations[D].Changchun:Jilin University,2017.
[14]MICKENS R E.A Nonstandard Finite-dierence Scheme for the Lotka-Volterra System[J].Applied Numerical Mathematics,2003,45(2):309-314.doi:10.1016/s0168-9274(02)00223-4
[15]张蕾.几类偏微分方程非标准有限差分格式的研究[D].哈尔滨:哈尔滨工业大学,2014.ZHANG Lei.Research on Nonstandard Finite Difference Schemes for Several Partial Differential Equations[D].Harbin:Harbin Institute of Technology,2014.
[16]郝树艳,刘波,李广兴.KdV方程的数值解及数值模拟[J].海军航空工程学院学报,2009,24(5):597-600.HAO Shuyan,LIU Bo,LI Guangxing.The Numerical Solution and Simulation for KdV Equation[J].Journal of Navel Aeronautical and Astronautical University,2009,24(5):597-600.