在线阅读 --自然科学版 2018年3期《s不超过6的无标号(n,n/2+s)奇图的计数》
s不超过6的无标号(n,n/2+s)奇图的计数--[在线阅读]
蔡杨, 霍京京, 李明超
河北工程大学 数理科学与工程学院, 河北 邯郸 056038
起止页码: 185--189页
DOI: 10.13763/j.cnki.jhebnu.nse.2018.03.001
摘要
一个图称为(n,m)-图,若|VG)|=n且|EG)|=m.一个奇图是指每个点的度都是奇数的图.给出了一种新的图同构的定义,计算并给出了不同构无标号(n,(n)/2+5)-奇图的结果,并对s=4,6给出了不同构无标号(n,(n)/2+s)-奇图的完整结果.

Enumeration of Unlabelled (n,n/2+s)-odd Graphs for s ≤ 6
CAI Yang, HUO Jingjing, LI Mingchao
School of Mathematics and Physics, Hebei University of Engineering, Hebei Handan 056038, China
Abstract:
A graph is defined as an (n,m)-graph if|V(G)|=n and|E(G)|=m.An odd graph is a graph such that every vertex has the odd degree.In this paper,we defined a new graph isomorphism,enumerate and count the nonisomorphic unlabelled odd (n, (n)/2 +5)-graphs and expand the results on nonisomorphic unlabelled odd (n, (n)/2 +s)-graphs for s=4,6.

收稿日期: 2017-12-01
基金项目: 国家自然科学基金(11501161,11701136);河北省自然科学基金(A2016402164);河北工程大学博士专项基金

参考文献:
[1]READ R C,ROBINSON R W.Enumeration of Labelled Multigraphs by Degree Parities[J].Discrete Math,1982,42:99-105.doi:10.1016/0012-365X(82)90058-9
[2]NARA C,TAZAWA S.Enumeration of Unlabelled Graphs with Specified Degree Parities[J].Discrete Math,1998,183:255-264.doi:10.1016/S0012-365X(97)00058-7
[3]LI M C,HUO J J,GAO Z C.Maximum Packings and Minimum Coverings of with Octagons[J].Graphs and Combin,2009,25:735-752.doi:10.1007/S00373-010-0879-z
[4]BONDY J A,MURTY U S R.Graph Theory with Applications[M].New York:North-Holland,1976.
[5]李明超,霍京京.v为偶数时(v,(v)/2+s)-奇图的计数定理[J].河北工程大学学报(自然科学版),2012,29:107-112.doi:10.3969/j.issn.1673-9469.2012.01.029
[6]KANG Q D,LI M C,HUO J J.Nonisomorphic Maximum Packing and Minimum Covering of with 8-cycles[J].Graphs and Combin,2013,29:1007-1040.doi:10.1007/S00373-012-1167-x
[7]康庆德.组合学笔记[M].北京:科学出版社,2009.
[8]HARARY F.Graph Theory[M].Massachusetts:Addison-Wesley Reading,1969.