在线阅读 --自然科学版 2017年5期《含动态负荷的非线性电力系统的多参数电压稳定性分析》
含动态负荷的非线性电力系统的多参数电压稳定性分析--[在线阅读]
郝建红, 米昕禾
华北电力大学 电子与电气工程学院, 北京 102206
起止页码: 403--412页
DOI: 10.13763/j.cnki.jhebnu.nse.2017.05.007
摘要
应用混沌分岔理论研究了有功负荷P1、无功负荷Q1和发电机机械功率Pm对含Walve综合负荷的电力系统动态电压稳定性的影响.在有功、无功负荷取不同值时,通过Lyapunov指数谱、平衡解流形和相轨迹时域仿真对参数改变时系统的状态变化进行综合分析.结果表明,在P1轻载、Q1由0增大或Q1过载、P1由0增加时,Hopf分岔和鞍结分岔为系统电压失稳和电压崩溃的动力学本质,且随着分岔参数增大,电压水平均有明显降低;当P1轻载、Q1重载时,一方面随着Pm的改变电压水平略有下降,另一方面系统在鞍结分岔点(鼻点)前,因倍周期分岔进入混沌不确定状态,在Pm受小扰动后,由于系统混沌轨道拉伸与折叠变换不平衡导致系统发散而发生电压崩溃;研究结果还表明,当电力系统运行在有功或无功轻载情况下,可通过调节Pm来扩大电压稳定运行范围,提高电网功率传输极限,但当有功轻载无功重载时,这一调节范围要考虑倍周期分岔的影响.

Multi-parameter Voltage Stability Analysis of the Nonlinear Power System with Dynamic Load
HAO Jianhong, MI Xinhe
School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Abstract:
Based on the theory of bifurcation and chaos,we studied the effects of three dynamic parameters (load active power P1,reactive power Q1 and generator mechanical power Pm) on the voltage stability of a power system with Walve integrated load.In different load condition,the system status characteristics changing with bifurcation parameters has been studied by using Lyapunov exponential spectrums,equilibrium solution manifold curves and phase trajectory simulations.The study showed that when Q1 increased from 0 with light P1 or P1 increased from 0 with heavy Q1,Hopf and saddle-node bifurcations were dynamical natures of voltage unstable and collapse.And with the increase of the bifurcation parameter,voltage level significantly decreased.When P1 was light and Q1 was heavy,the voltage level indistinctively decreased with changing of Pm.And before reaching the nose point (the saddle node bifurcation point),the system became chaotic due to the period doubling bifurcation.And then the voltage collapsed after small perturbation of Pm since the tension and folding transformations of the chaotic orbit were not balanced.The result also indicated that when the system was run under condition of light P1 or Q1,the voltage stable operating range and the power transfer limitation could be increased by adjusting the generator mechanical power.But when P1 was light and Q1 was heavy,the adjustable range would be affected by period doubling bifurcation.

收稿日期: 2017-02-22
基金项目: 国家自然科学基金(61372050)

参考文献:
[1]王梅义,吴竟昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995.
[2]许晓菲,牟涛,贾琳,等.大规模风电汇集系统静态电压稳定实用判据与控制[J].电力系统自动化,2014,38(9):15-19.doi:10.7500/AEPS20130321008
[3]HAQUE M H.Impacts of Fixed Speed Wind Generators on Static Voltage Stability of Distribution Systems[C]//RED H.20164th International Conference on the Development in Renewable Energy Technology (ICDRET).New York:IEEE,2016:1.doi:10.1109/ICDRET.2016.7421499
[4]陈仕龙,谢佳伟,毕贵红,等.一种特高压直流输电线路神经网络双端故障测距新方法[J].电工技术学报,2015,30(4):256-263.doi:10.3969/j.issn.1000-6753.2015.04.032[LM]
[5]QIU Yiwei,WU Hao,ZHOU Yongzhi.Global Parametric Polynomial Approximation of Static Voltage Stability Region Boundaries[J].IEEE Trans on Power Systems,2016(99):2362-2371.doi:10.1109/TPWRS.2016.2597364
[6]CHOWDHURY B H,TAYLOR C W.Voltage Stability Analysis:V-Q Power Flow Simulation Versus Dynamic Simulation[J].IEEE Trans on Power Systems,2000,15(4):1354-1359.doi:10.1109/59.898112
[7]彭志炜,胡国根,韩祯祥.基于分叉理论的电力系统电压稳定性分析[M].北京:中国电力出版社,2005.
[8]蒋平,顾伟,严伟佳,等.基于多参数分岔分析方法的多机系统动态负荷裕度研究[J].电工技术学报,2007,22(3):107-114.doi:10.3321/j.issn.1000-6753.2007.03.018
[9]庄慧敏,肖建.交直流系统电压稳定性的Hopf分岔分析[J].高电压技术,2009,35(3):699-704.
[10]许珊珊,汤放奇,周任军,等.不同风电系统动态电压稳定的分岔分析[J].电网技术,2010,34(5):67-71.doi:10.1109/CCECE.2010.5575154
[11]谭涛亮,张尧,钟庆.交直流互联系统的多参数分岔分析[J].电力自动化设备,2012,32(2):23-28.doi:10.3969/j.issn.1006-6047.2012.02.003
[12]LAI D K,SWARUP K S.Modeling and Simulation of Chaotic Phenomena in Electrical Power Systems[J].Applied Soft Computing,2011,11(1):103-110.doi:10.1016/j.asoc.2009.11.001
[13]刘韶峰.分岔理论与AUTO97在电力系统电压稳定性分析中的应用研究[D].郑州:郑州大学,2004.
[14]刘宗华.混沌动力学基础及其应用[M].北京:高等教育出版社,2006.
[15]陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,1995.
[16]杨黎晖,马西奎.基于分岔理论的含双馈风电机组的电力系统电压稳定性分析[J].电工技术学报,2012,27(9):1-8.
[17]曹国云,刘丽霞,赵亮,等.基于延拓法的电力系统稳定模型中二维参数局部分叉边界的计算[J].中国电机工程学报,2005,25(8):13-16.doi:10.3321/j.issn.0258-8013.2005.08.003
[18]HIL M,FABIO D,BART O.Numerical Bifurcation Analysis[C]//MEYERS R A.Mathematics of Complexity and Dynamical Systems.Berlin:Springer,2011:1177-1180.doi:10.1007/978-0-387-30440-3_373
[19]YURI A.Kuznetsov Elements of Applied Bifurcation Theory[M].2nd ed.Berlin:Springer,1998:307-312.