在线阅读 --自然科学版 2017年5期《具有年龄阶段结构的Cuckoo鸟生长动力学模型的稳定性与Hopf分支》
具有年龄阶段结构的Cuckoo鸟生长动力学模型的稳定性与Hopf分支--[在线阅读]
解雷芳1, 马万彪1, SAMPATH A P B G1,2
1. 北京科技大学 数理学院, 北京 100083;
2. Faculty of Science, University of Ruhuna, Matara 81000
起止页码: 374--380页
DOI: 10.13763/j.cnki.jhebnu.nse.2017.05.002
摘要
提出了一类改进的刻画Cuckoo鸟生长的时滞微分方程动力学模型,利用微分方程等有关理论完整地研究了该类动力学模型平衡点的存在性、稳定性和Hopf分支.同时,使用数值模拟检验了与理论结果的一致性.

Stability and Hopf Bifurcation of a Dynamic Model Describing Evolution and Growth of Cuckoo Birds
XIE Leifang1, MA Wanbiao1, SAMPATH A P B G1,2
1. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
2. Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka
Abstract:
In this paper,a class of revised dynamic model is propsed to describe the evolution between Cuckoo birds and their host birds.In this model,there are age structure and time delay.The basic theory of the solutions, stability and Hopf bifurcation of the model are studied in details.At the same time,the numerical simulations are given to summarize the theoretical results.

收稿日期: 2017-03-10
基金项目: 国家自然科学基金(11471034)

参考文献:
[1]郑光美.鸟类学[M].北京:北京师范大学出版社,1995.
[2]PETRIE M,MØLLER A P.Laying Eggs in Others' Nests:Intraspecific Brood Parasitism in Birds[J].Trends in Ecology and Evolution,1991,6(10):315-320.doi:10.1016/0169-5347(91)90038-Y
[3]SAMPATH A P B G,MA W,JIANG Z.Mathematical Analysis of the Effect of Cuckoo Bird's Incubation Period in Population Dynamics[J].Applied Mathematical Modelling,2016,40(23):10167-10180.doi:10.1016/j.amp.2016.06.048
[4]PAYNE R B,PAYNE L L.Brood Parasitism by Cowbirds:Risks and Effects on Reproductive Success and Survival Inindigo Buntings[J].Behavioral Ecology,1998,9(1):64-73.doi:10.1093/beheco/9.1.64
[5]AIELLO W G,FREEDMAN H I.A Time-delay Model of Single Species Growth with Stage-structure[J].Mathematical Biosciences,1990,101:139-153.doi:10.1016/S0025-5564(90)90019-U
[6]AIELLO W G,FREEDMAN H I,WU J.Analysis of a Model Representing Stage-structured Population Growth with State-dependent Time Delay[J].SIAM Journal on Applied Mathematics,1992,52(3):855-869.doi:10.1137/0152048
[7]SONG X,CHEN L.Optimal Harvesting and Stability for a Two-species Competitive System with Stage Structure[J].Mathematical Biosciences,2001,170(2):173-186.doi:10.1016/S0025-5564(00)00068-7
[8]HU H,HUANG L.Stability and Hopf Bifurcation in a Delayed Predator-prey System with Stage Structure for Prey[J].Nonlinear Analysis:Real World Applications,2010,11(4):2757-2769.doi:10.1016/j.nonrwa.2009.10.001
[9]董庆来,马万彪.具有时滞和可变营养消耗率的比率型Chemostat模型稳定性分析[J].系统科学与数学,2009,29(2):228-241.
[10]郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社,1994.
[11]内藤敏机,原惟行,日野义之,等.时滞微分方程——泛函微分方程引论[M].马万彪,陆征一译.北京:科学出版社,2013.
[12]KUANG Y.Delay Differential Equations with Applications in Population Dynamics[M].San Diego:Academic Press,1993.
[13]HUANG G,MA W,TAKEUCHI Y.Global Analysis for Delay Virus Dynamics Model with Beddington-DeAngelis Functional Response[J].Applied Mathematics Letters,2011,24(7):1199-1203.doi:10.1016/j.aml.2011.02.007
[14]HUANG G,MA W,TAKEUCHI Y.Lyapunov Functionals for Delay Differential Equations Model of Viral Infections[J].SIAM Journal on Applied Mathematics,2010,70(7):2693-2708.doi:10.1137/090780821
[15]LI X,WEI J.On the Zeros of a Fourth Degree Exponential Polynomial with Applications to a Neural Network Model with Delays[J].Chaos Solitons Fractals,2005,26(2):519-526.doi:10.1016/j.chaos.2005.01.019
[16]WANG L,NIU B,WEI J.Dynamical Analysis for a Model of Asset Prices with Two Delays[J].Physica A,2016,447:297-313.doi:10.1016/j.physa.2015.12.054
[17]CHEN S,SHI J,WEI J.Time Delay-induced Instabilities and Hopf Bifurcations in General Reaction-diffusion Systems[J].Journal of Nonlinear Science,2013,23(1):1-38.doi:10.1007/s00332-012-9138-1