在线阅读 --自然科学版 2017年5期《一类混合流体方程解的有限时间传播速度及爆破》
一类混合流体方程解的有限时间传播速度及爆破--[在线阅读]
韩平, 林春进
河海大学 理学院, 江苏 南京 211100
起止页码: 369--373页
DOI: 10.13763/j.cnki.jhebnu.nse.2017.05.001
摘要
研究了一类耦合的运动学与流体力学方程极限模型的局部经典解的特性.利用能量方法讨论了方程具有有限传播速度,利用有限传播速度导出的微分不等式证明方程的解不以指数形式衰减,且当初值充分大时,光滑解在有限时间内会爆破.

Smooth Solutions of a System of Mixed Fluid Equations' Finite Speed of Propagation and Blow up
HAN Ping, LIN Chunjin
School of Science, Hohai University, Jiangsu Nanjing 211100, China
Abstract:
We study the properties of the classical solution to a limiting model of a system of coupled kinetic and fluid equation.The finite speed of propagation is proved by the energy method,we establish differential inequalities that show that the solution does not decay exponentially and that in the case of large data smooth solutions may blow up in finitely.

收稿日期: 2017-03-05
基金项目: 国家自然科学基金(11201116)

参考文献:
[1]MELLET A,VASSEUR A.Asymptotic Analysis for A Vlasov-Fokker-Planck/Compressible Navier-Stokes System of Equations[J].Communications in Mathematical Physics,2008,281(3):573-596.doi:10.1007/S00220-008-0523-4.
[2]NISHIDA T.Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics[M].Paris:Université de Paris-Sud,1978.
[3]DAFERMOS C M.Can Dissipation Prevent the Breaking of Waves[C]//Transactions of the Twenty-sixth Conference of Army Mathematicians.Hanover:N H,1981:187-198.
[4]LI D.Global Classical Solutions for Quasilinear Hyperbolic Systems[M].New York:John Wiley & Sons,1994.
[5]SIDERIS T C.Formation of Singularities in Three-dimensional Compressible Fluids[J].Communications in Mathematical Physics,1985,101(4):475-485.
[6]SIDERIS T C,THOMASES B,WANG D H.Long Time Behavior of Solutions to the 3D Compressible Euler Equations with Damping[J].Communications in Partial Differential Equations,2003,28(3):795-816.doi:10.1081/PDE-120020497.
[7]MAJDA A.Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[M].New York:Springer Science & Business Media,2012.
[8]KATO T.The Cauchy Problem for Quasi-Linear Symmetric Hyperbolic Systems[J].Archive for Rational Mechanics and Analysis,1975,58(3):181-205.