在线阅读 --自然科学版 2015年2期《求解奇异非线性方程组的牛顿不精确最小二乘算法》
求解奇异非线性方程组的牛顿不精确最小二乘算法--[在线阅读]
杨家岭, 曹德欣
中国矿业大学 理学院, 江苏 徐州 221116
起止页码: 104--110页
DOI: 10.13763/j.cnki.jhebnu.nse.2015.02.003
摘要
对运用M-P逆建立的Newton迭代法做近似,构造不精确的算法.取Newton方程组的最小二乘解的近似解推导构造不精确的算法,结果可得到不精确Gauss-Newton算法和不精确Levenberg-Marquardt算法;用一迭代法计算雅可比矩阵的Moore-Penrose逆,截取它的一个近似矩阵构造不精确的算法,给出了近似程度的控制条件,证明了其收敛性;用雅可比矩阵的局部信息代替其全部信息构造不精确的算法,证明了算法的收敛性.数值例子也表明了不精确算法在求解大型方程组问题上的优越性.

Inexact Newton-least Squares Methods for Singular Nonlinear System of Equations
YANG Jialing, CAO Dexin
College of Sciences, China University of Mining and Technology, Jiangsu Xuzhou 221116, China
Abstract:
Inexact methods of Newton's method constructed with Moore-Penrose inverse are given.First,inexact Gauss-Newton method and inexact Levenberg-Marquardt method are deduced by taking an approximate solution of the least squares solution of Newton equations.Second,the inexact method is constructed by taking an approximate matrix of Moore-Penrose inverse of Jacobian matrix,and its convergence is proved.Third,the inexact method is constructed by using local information instead of the whole information of the Jacobian matrix,and the convergence is proved.The numerical example also indicates its superiority in solving large system of equations.

收稿日期: 2014-9-16
基金项目: 国家自然科学基金(70901073); 中央高校基本科研业务费专项资金(JGK101676)

参考文献:
[1]KANTOROVICH L V,AKILOV G P.Functional Analysis[M].Oxford: Pergamon,1982.
[2]SMALE S.Newton's Method Estimates from Data at One Point[M]//EWING K,GROSS K,MARTIN C.The Merging of Disciplines: New Directions in Pure,Applied and Computational Mathematics,New York: Springer,1986:185-196.
[3]TRAUB J F,WOZNIAKOWSKI H.Convergence and Complexity of Newton Iteration[J].J Assoc Comput Math,1979,29:250-258.
[4]WANG Xinhua.Convergence of Newton's Method[J].Chinese Science Bulletin,1980,25:36-37.
[5]ORTEGA J M,RHEINBOLDT W C.Iterative Solution of Nonlinear Equations in Several Variables[M].New York: Academic Press,1970.
[6]ANEREW.On Newton-iterative Methods for the Solution of Systems of Nonlinear Equations[J].SIAM J Nuner Anal,1978,15:755-771.
[7]DEMBO R S,EISENSTAT S C,STEIHAUG T.Inexact Newton Methods[J].SIAM J Nuner Anal,1982,14:400-408.
[8]DEMBO R S,STEIHAUG T.Truncated-Newton Algorithms for Large-scale Unconstrained Optimization[J].Math Programming,1983,26:190-212.
[9]LIU Hao,NI Qin.Incomplete Jacobian Newton Method for Nonlinear Equations[J].Computer and Mathematics with Applications,2008,56:218-227.
[10]陈飞,王海军,曹苏玉.求解非线性方程组的改进不精确雅可比牛顿法[J].计算机工程与应用,2014,14:45-47.
[11]REDDIN.On Newton's Method for Singular Problem[J].SIAM J Nuner Anal,1987,15:993-994.
[12]KELLEY.A New Acceleration Method for Newton's Method at Singular Points[J].SIAM J Nuner Anal,1983,20:1001-1009.
[13]DECKER D W,KELLEY C T.Convergence Acceleration for Newton's Method at Singular Point[J].SIAM J Nuner Anal,1982,19:219-229.
[14]DECKER D W,KELLEY C T.Convergence Rates for Newton's Method at Singular Points[J].SIAM J Nuner Anal,1983,20:296-314.
[15]GRIEWANK A.On Solving Nonlinear Equations with Simple Singulartise or Nearly Singular Solutions[J].SIAM Rev,1985,27:537-563.
[16]ALLGOWER E L,BOHMER K.Resolving Singular Nonlinear Equations[J].Rocky Mount Math J,1987,18:225-268.
[17]吴国桢,王金华.关于奇异非线性方程组的Newton法的收敛性[J].浙江大学学报: 理学版,2008,35(1):27-31.
[18]PERIS R,MARQUINA A,CANDELA V.The Convergence of the Perturbed Newton Method and Its Application for Ill-conditioned Problems[J].Applied Mathematics and Computation,2011,218:2988-3001.
[19]BEN ISRALEL A,GREVILLE T N E.Generalized Inverse:Theory and Application[M].2th ed.New York: Spring-verlag,2002.
[20]CHEN J,LI W.Convergence of Gauss-Newton's Method and Uniqueness of the Solution[J].Applied Mathematics and Computation,2005,170:686-705.
[21]CHEN J.The Convergence Analysis of Inexact Gauss-Newton Methods for Nonlinear Problems[J].Comput Optim Appl,2008,40:97-118.
[22]WRIGHT S J,HOLT J N.An Inexact Levenberg-Marquardt Method for Large Sparse Nonlinear Least Squares[J].The Journal of the Australian Mathematical Society(Series B):Applied Mathematics,1985,26:387-403.
[23]HIROSHIGE D,NOBUO Y,MASSO F.Convergence Properties of the Inexact Levenberg-marquardt Method Under Local Error Bound Conditions[J].Optimization Methods and Software,2002,17:605-626.
[24]TOUTOUNIAN F,ATAEI A.A New Method for Computing Moore-penrose Inverse Matrices[J].Journal of Computational and Applied Mathematics,2009,228:412-417.
[25]CHEN H B,WANG Y J.A Family of Higher-order Convergent Iterative Methods for Computing the Moore-Penrose Inverse[J].Applied Mathematics and Computation,2011,218:4012-4016.